Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔADM có
AB=AD
AM chung
BM=DM
Do đó: ΔABM=ΔADM
Tự vẽ hình được nha bạn ^^.
a, Vì M là trung điểm của đoạn thẳng BD
=> MB = MD = BD: 2
Xét tam giác ADM và tam giác ABM:
AM: Cạnh chung
AB = AD
MB = MD ( chứng minh trên )
Do đó: \(\Delta ABM=\Delta ADM\left(c.c.c\right)\)
Phần b sai đề, vì phần c có liên quan đến phần b mà phần b sai đề => phần c cũng sai đề
Xét 2 tam giác ABM và ADM có
AB = AD
BM = DM => tam giác ABM = tam giác ADM (c.c.c)
Cạnh AM chung
=> A1 = A2
B1 = D1
M1 = M2
Vì M1 kề bù với M2
=> M1 + M2 = 180
=>2 M1 = 180
=> M1 = 90
=< M2 = 90
Vì M1 kề bù vs M4
M2 kề bù vs M3
=> M1 + M4 = M2 + M3 = 180
Mà M1 = M2 = 90
=> M4 = 180 - 90 = 90
M3 = 180 - 90 = 90
=> M3 = M4
Xét 2 tam giác KMD và KMB có :
M3 = M4
BM = DM => tam giác KMD = tam giác KMB (c.g.c)
MK là cạnh chung
=> BK = DK
Xét 2 tam giác ABK và ADK có :
AB = AD
BK = DK => tam giác ABK = ADK (c.c.c)
AK là cạnh chung
b) Đợi tý , tớ suy nghĩ đã
theo tớ , đề câu a phải là :
AM cắt cạnh BC tại K.Chứng minh tam giác ABK=tam giác ADK
a: Xét ΔAMB và ΔAMD có
AM chung
MB=MD
AB=AD
Do đó: ΔAMB=ΔAMD
b: Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
c: Xét ΔKBE và ΔKDC có
KB=KD
\(\widehat{KBE}=\widehat{KDC}\)
BE=DC
Do đó: ΔKBE=ΔKDC
Suy ra: \(\widehat{BKE}=\widehat{DKC}\)
=>\(\widehat{BKE}+\widehat{BKD}=180^0\)
hay E,K,D thẳng hàng
Bạn tự vẽ hình nha =="
a.
Xét tam giác ABM và tam giác ADM có:
AB = AD (gt)
BM = DM (M là trung điểm của BD)
AM là cạnh chung
=> Tam giác ABM = Tam giác ADM (c.c.c)
b.
AB = AD (gt)
=> Tam giác ABD cân tại A
M là trung điểm của BD
=> AM là trung tuyến của tam giác ABD cân tại A
=> AM là đường cao tam giác ABD cân tại A
=> AM _I_ BD
c.
Xét tam giác ABK và tam giác ADK có:
AB = AD (tam giác ABD cân tại A)
BAK = DAK (tam giác ABM = tam giác ADM)
AK là cạnh chung
=> Tam giác ABK = Tam giác ADK (c.g.c)
d.
ABK + KBF = 180 (2 góc kề bù)
ADK + KDC = 180 (2 góc kề bù)
Mà ABK = ADK (tam giác ABK = tam giác ADK)
=> KBF = KDC
Xét tam giác KBF và tam giác KDC có:
KB = KD (tam giác ABK = tam giác ADK)
KBF = KDC (chứng minh trên)
BF = DC (gt)
=> Tam giác KBF = Tam giác KDC (c.g.c)
BKD + DKC = 180 (2 góc kề bù)
Mà DKC = BKF (Tam giác KBF = Tam giác KDC)
=> BKD + BKF = 180
=> KD và KF là 2 tia đối
=> K , F , D thẳng hàng
Chúc bạn học tốt ^^