Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABC\)có:
\(AE=BE\)(giả thiết)
\(AD=CD\)(giả thiết)
\(\Rightarrow DE\)là đường trung bình của \(\Delta ABC\)
\(\Rightarrow DE//BC\)(tính chất) (1)
Và \(2DE=BC\)(tính chất) (2)
Xét \(\Delta GBC\)có:
\(GH=BH\)(giả thiết)
\(GK=CK\)(giả thiết)
\(\Rightarrow HK\)là đường trung bình của \(\Delta ABC\)
\(\Rightarrow HK//BC\)(tính chất) (3)
Và \(2HK=BC\)(tính chất) (4)
Từ (1) và (3)
\(\Rightarrow ED//HK\)(5)
Từ (2) và (4)
\(\Rightarrow2DE=2KH\Rightarrow DE=KH\)(6)
Xét tứ giác DEHK có: (5) và (6).
\(\Rightarrow DEHK\)là hình bình hành (điều phải chứng minh)
a)
ta có G là trọng tâm của tam giác ABC.
\(\hept{\begin{cases}\Rightarrow BH=GH=GD\\\Rightarrow EG=GK=KC\end{cases}}\)
hay G là trung điểm của EK và HD.
tứ giác EDKH có 2 đường chéo cắt nhau tại trung điểm mỗi đường
do đó tứ giác EDKH là hình bình hành.
b) để hình bình hành EDKH là hình chữ nhật thì EK=HD
⇒BD=EC⇒ΔABCcân
vậy để hình bình hành EDKH là hình chữ nhật thì tam giác ABC cân
c) vẽ đường cao AI vuông góc với BC.
khi đó AI cũng là đường trung tuyến.
\(\Rightarrow AG=\frac{2}{3}AI\)
ta có :\(\hept{\begin{cases}BE=AE\\AD=DC\end{cases}}\) nên ED là đường trung bình của tam giác ABC.
⇒\(\hept{\begin{cases}ED//BC\\2ED=BC\end{cases}}\)
vì ED//BC và AI⊥BC nên ED⊥AI
đồng thời EH⊥ED nên EH//AI.
ta có: \(\hept{\begin{cases}EH//AI\\BE=EA\end{cases}}\)\(\Rightarrow AH=\frac{AG}{2}\)
hay \(EH=\frac{\frac{2}{3}AI}{2}=\frac{1}{3}AI\Leftrightarrow3EH=AI\)
\(S\Delta ABC=\frac{AI.BC}{2}=\frac{3EH.2ED}{2}=3EH.ED\)=\(3S_{EDHK}\)
vậy\(\frac{S_{EDHK}}{S_{\Delta ABC}}=\frac{1}{3}\)
CHÚC BẠN HỌC TỐT
a) \(\Delta ABC\)có EA = EB; DA = DC
\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)ED // BC; ED = \(\frac{BC}{2}\) (2)
\(\Delta GBC\)có HG = HB; KG = KC
\(\Rightarrow\)HG là đường trung bình của \(\Delta GBK\)
\(\Rightarrow\)HG // BC; HG = \(\frac{BC}{2}\) (1)
Từ (1); (2) suy ra: ED = HK; ED // HK
\(\Rightarrow\)Tứ giác DEHK là hình bình hành