Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chung
\(\widehat{HAD}=\widehat{EAD}\)
Do đó: ΔAHD=ΔAED
b: Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)
\(\widehat{BDA}+\widehat{HAD}=90^0\)
mà \(\widehat{CAD}=\widehat{HAD}\)
nên \(\widehat{BAD}=\widehat{BDA}\)
Xét ΔABD có \(\widehat{BAD}=\widehat{BDA}\)
nên ΔBAD cân tại B
c: Xét ΔHDK vuông tại H và ΔEDC vuông tại E có
DH=DE
\(\widehat{HDK}=\widehat{EDC}\)
Do đó: ΔHDK=ΔEDC
CM:DH=DE
Vì AH là đường cao=>góc AHC=90o
Vì DE vuông góc với AC=>góc AEP=90o
AHC=AEP(=90o)
Xét tam giác ADE và tam giác ADH có:
AHC=AEP(=90o )
AD:cạnh chung
EAD=HAD(AD là phân giác của tam giác AHC)
=>tam giác ADE=tam giác ADH(cạnh huyền-góc nhọn)
=>DE=DH(2 cạnh tương ứng)
a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chung
góc HAD=góc EAD
=>ΔAHD=ΔAED
=>DH=DE
b: Xét ΔAEK vuôngtại E và ΔAHC vuông tại H có
AE=AH
góc EAK chung
=>ΔAEK=ΔAHC
=>AK=AC
=>ΔAKC cân tại A
c: Xét ΔKHE và ΔCEH có
KH=CE
HE chung
KE=CH
=>ΔKHE=ΔCEH
d: CB=8+32=40cm
\(AC=\sqrt{32\cdot40}=\sqrt{1280}=16\sqrt{5}\left(cm\right)\)
a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chung
AH=AE
=>ΔAHD=ΔAED
b: DH=DE
DE<DC
=>DH<DC
c: Xét ΔAKC có
CH,KE là đường cao
CH căt KE tại D
=>D là trực tâm
=>AD vuông góc KC
xét tam giác ADH(vuông tại H) và tam giác ADE(vuông tại E) có :
góc HAD= góc EAD( vì AD là phân giác của góc HAC).
AD chung.
do đó: tam giác ADH= tam giác AED( cạnh huyền. Góc nhọn).
=>HD=DE.
xét tam giác HDK và tam giác EDC có:
góc AHD= góc CED=90 độ.
HD=DE.
góc HDK= góc EDC( 2 góc đối đỉnh)
do đó tam giác HDK = tam giác EDC(g-c-g). => DK=DC=> tam giác DKC cân tại D
a) Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chung
\(\widehat{HAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{HAE}\))
Do đó: ΔAHD=ΔAED(cạnh huyền-góc nhọn)
⇒HD=ED(hai cạnh tương ứng)
Xét ΔHDK vuông tại H và ΔEDC vuông tại E có
HD=ED(cmt)
\(\widehat{HDK}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔHDK=ΔEDC(cạnh góc vuông-góc nhọn kề)
b) Ta có: ΔAHD=ΔAED(cmt)
nên AE=AH(hai cạnh tương ứng)
Xét ΔAEH có AE=AH(cmt)
nên ΔAEH cân tại A(Định nghĩa tam giác cân)
⇒\(\widehat{AEH}=\dfrac{180^0-\widehat{EAH}}{2}\)(Số đo của một góc ở đáy trong ΔAEH cân tại A)(1)
Ta có: ΔHDK=ΔEDC(cmt)
nên HK=EC(hai cạnh tương ứng)
Ta có: AE+EC=AC(E nằm giữa A và C)
AH+HK=AK(H nằm giữa A và K)
mà AE=AH(cmt)
và EC=HK(cmt)
nên AC=AK
Xét ΔACK có AC=AK(cmt)
nên ΔACK cân tại A(Định nghĩa tam giác cân)
⇒\(\widehat{ACK}=\dfrac{180^0-\widehat{CAK}}{2}\)(Số đo của một góc ở đáy trong ΔACK cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AEH}=\widehat{ACK}\)
mà \(\widehat{AEH}\) và \(\widehat{ACK}\) là hai góc ở vị trí đồng vị
nên HE//KC(Dấu hiệu nhận biết hai đường thẳng song song)
a) Xét \(\Delta AHB\)và\(\Delta AHC\)có :
\(\hept{\begin{cases}HB=HC\\AH\\AB=AC\end{cases}}\)( Bạn tự ghi lời giải thích nha)
\(\Rightarrow\Delta AHB=\Delta AHC\left(c.c.c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{AHC}\)(2 cạnh tương ứng)
Mà \(\widehat{AHB}+\widehat{AHC}=180^o\)( 2 góc kề bù )
\(\Rightarrow\widehat{AHB}=\widehat{AHC}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AH\perp BC\)
b) Xét \(\Delta AHM\left(\widehat{AMH}=90^o\right)\)và \(\Delta AHN\left(\widehat{ANH}=90^o\right)\)có :
\(\hept{\begin{cases}AH\\\widehat{A_1}=\widehat{A_2}\end{cases}}\)( bạn tự nêu lí do )
\(\Rightarrow\Delta AHM=\Delta AHN\)( Cạnh huyền - góc nhọn )