K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔAHB vuông tại H có HM là đường cao

nên AM*AB=AH^2

ΔAHC vuông tại H có HN là đường cao

nên AN*AC=AH^2

=>AM*AB=AN*AC

=>AM/AC=AN/AB

=>góc AMN=góc ACB

=>góc NMB+góc NCB=180 độ

=>NMBC nội tiếp

b: kẻ đường kính AL

góc ACL=90 độ

AC*AN=AH^2

ΔAIN đồng dạng với ΔACE

=>AI/AC=AN/AE

=>AI*AE=AH^2

góc ADE=90 độ

=>ΔADE vuông tại D

=>AI*AE=AD^2=AH^2

=>AD=AH

1: BA=căn 10^2-6^2=8cm

sin ABC=AC/BC=3/5

=>góc ABC=37 độ

AH=6*8/10=4,8cm

BH=BA^2/BC=8^2/10=6,4cm

2: ΔAHB vuông tại H có HI là đường cao

nên AI*AB=AH^2

ΔAHC vuông tại H có HK là đường cao

nên AK*AC=AH^2

=>AI*AB=AK*AC

3: AI*AB=AK*AC

=>AI/AC=AK/AB

Xét ΔAIK và ΔACB có

AI/AC=AK/AB 

góc IAK chung

=>ΔAIK đồng dạng với ΔACB

30 tháng 11 2021

c: Xét ΔAHB vuông tại H có HI là đường cao

nên \(AI\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HK là đường cao

nên \(AK\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)

b: AH=24cm

BH=18cm

17 tháng 1 2016

EM CHUA HOC MOI HOC LOP 7 XIN LOI CHI TIC CHO EM CAI VOI

18 tháng 1 2016

AI = \(\frac{8\sqrt{5}}{5}\)

AK = \(\frac{4\sqrt{5}}{5}\)

SAIK = \(\frac{8\sqrt{5}}{5}\) *\(\frac{4\sqrt{5}}{5}\)   / 2 = 3,2 cm2

a: Xét ΔAHC vuông tại H có sin C=AH/AC

=>AH/8=sin30=1/2

=>AH=4cm

HC=căn AC^2-AH^2=4*căn 3(cm)

b: ΔAHB vuông tại H có  HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nên AF*AC=AH^2

=>AE*AB=AF*AC

=>AE/AC=AF/AB

Xét ΔAEF và ΔACB có

AE/AC=AF/AB

góc A chung

=>ΔAEF đồng dạng với ΔACB

=>góc AEF=góc ACB

a) Xét tứ giác ADHE có 

\(\widehat{ADH}\) và \(\widehat{AEH}\) là hai góc đối

\(\widehat{ADH}+\widehat{AEH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ADHE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:

\(AD\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)(đpcm)