Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:\(\Delta AMB = \Delta AMC\)nên AB = AC, MB = MC nên M là trung điểm của đoạn thẳng BC.
b) Ta có:\(\Delta AMB = \Delta AMC\)nên \(\widehat {AMB} = \widehat {AMC},\widehat {MAB} = \widehat {MAC},\widehat {MBA} = \widehat {MCA}\).
Vậy tia AM là tia phân giác của góc BAC vì \(\widehat {MAB} = \widehat {MAC}\).
Ta thấy:\(\widehat {AMB} = \widehat {AMC}\)mà ba điểm B, M, C thẳng hàng nên \(\widehat {BMC} = 180^\circ \).
\(\Rightarrow \widehat {AMB} = \widehat {AMC} = \dfrac{1}{2}.\widehat {BMC} = \dfrac{1}{2}.180^\circ = 90^\circ \). Vậy \(AM \bot BC\).
AB = AC => Tam giác ABC cân tại A
a. Xét tam giác AMB và tam giác AMC
AB = AC ( gt )
Góc B = góc C ( ABC cân )
BM = CM ( gt )
Vậy...... ( c.g.c)
=> góc BAM = góc CAM ( 2 góc tương ứng )
=> AM là phân giác góc A
b. trong tam giác cân ABC đường phân giác cũng là đường cao
=> AM vuông BC
c.tam giác MEF là tam giác cân vì:
xét tam giác vuông BME và tam giác vuông CMF
Góc B = góc C
MB = MC ( gt )
Vậy....( cạnh huyền. góc nhọn )
=> ME = MF ( 2 cạnh tương ứng )
Chúc bạn học tốt !!!
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
Suy ra: ME=MF
hay ΔMEF cân tại M
a) tam giác AMB và AMC có :
AM là cạnh chung
AB=AC(giả thiết)
MB=MC( M trung điểm của BC)
=>tam giác AMB=AMC(c-c-c)
b) tam giác AMB =AMC(cm trên)
=> góc BAM = CAM (hai góc tương ứng)
mà AM nằm giữa AB và AC
=> AM là tia phân giác của góc BAC
c)tam giác AMB = AMC (cm trên)
=> góc AMB = AMC( 2 góc tương ứng)
mà góc AMB+AMC=180o
=> góc AMB=AMC=180/2=90o
=> AM vuông góc với BC
nhớ vẽ hình
tick nha
a: ΔABM=ΔACM
=>BM=CM
=> M là trung điểm của BC
b: ΔAMC=ΔAMB
=>góc MAC=góc MAB và AC=AB
=>AM là phân giác của góc BAC
AB=AC
MB=MC
=>AM là trung trực của BC
=>AM vuông góc BC