K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABM=ΔACM

=>BM=CM

=> M là trung điểm của BC

b: ΔAMC=ΔAMB

=>góc MAC=góc MAB và AC=AB

=>AM là phân giác của góc BAC 

AB=AC

MB=MC

=>AM là trung trực của BC

=>AM vuông góc BC

29 tháng 11 2021

a

vì AM là tia phân giác của góc A=>góc BAM=CAM

xét  tam giác AMB và tam giác AMC có: 

góc BAM=CAM,AM chung,AB=AC=>tam giác AMB = tam giác AMC

b

vì tam giác AMB = tam giác AMC=>MB=MC=>M là trung điểm BC

vì tam giác AMB = tam giác AMC=>góc BAM=CAM mà góc BAM+CAM=180=>BAM=CAM=180 độ/2=90 độ=>AM vuông góc với BC

c

xét tam giác ABM và KCM có

MB=MC,MA=MK,góc BMA=CMK(vì đối đỉnh)=>tam giác ABM = KCM=>AB=CK

vì tam giác ABM = KCM=>góc ABM=KMB mà 2 góc trên ở vị trí so le trog=>AB//CK

29 tháng 11 2021

Xài Telex cho nóa đẹp đy !

6 tháng 2 2022

AB = AC => Tam giác ABC cân tại A

a. Xét tam giác AMB và tam giác AMC

AB = AC ( gt )

Góc B = góc C ( ABC cân )

BM = CM  ( gt )

Vậy...... ( c.g.c)

=> góc BAM = góc CAM ( 2 góc tương ứng )

=> AM là phân giác góc A

b. trong tam giác cân ABC đường phân giác cũng là đường cao

=> AM vuông BC

c.tam giác MEF là tam giác cân vì:

xét tam giác vuông BME và tam giác vuông CMF 

Góc B = góc C

MB = MC ( gt )

Vậy....( cạnh huyền. góc nhọn )

=> ME = MF ( 2 cạnh tương ứng )

Chúc bạn học tốt !!!

 

 

a: Xét ΔAMB và ΔAMC có 

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường phân giác

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó: ΔAEM=ΔAFM

Suy ra: ME=MF

hay ΔMEF cân tại M

14 tháng 11 2021
a) Ta có: ΔAMB = ΔAMC ⇒ MB = MC (2 cạnh tương ứng) ⇒ M là trung điểm của BC b) Ta có: ΔAMB = ΔAMC ⇒ ˆ B A M = ˆ C A M ⇒ B A M ^ = C A M ^ (2 góc tương ứng) ⇒ AM là tia phân giác của ˆ A A ^ c) Ta có: ΔAMB = ΔAMC ⇒ ˆ A M B = ˆ A M C ⇒ A M B ^ = A M C ^ (2 góc tương ứng) mà ˆ A M B + ˆ A M C = 180 o A M B ^ + A M C ^ = 180 o ⇒ ˆ A M B = ˆ A M C = 90 o ⇒ A M B ^ = A M C ^ = 90 o ⇒ AM ⊥ BC
21 tháng 12 2020

a) Xét ΔAMB và ΔAMC có 

AB=AC(gt)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔAMB=ΔAMC(c-c-c)

b) Ta có: AB=AC(gt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

hay AM⊥BC(đpcm)

c) Ta có: ΔABM=ΔACM(cmt)

nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

hay \(\widehat{HAM}=\widehat{KAM}\)

Xét ΔAHM và ΔAKM có

AH=AK(gt)

\(\widehat{HAM}=\widehat{KAM}\)(cmt)

AM chung

Do đó: ΔAHM=ΔAKM(c-g-c)

\(\widehat{HMA}=\widehat{KMA}\)(hai góc tương ứng)

mà tia MA nằm giữa hai tia MH và MK

nên MA là tia phân giác của \(\widehat{HAK}\)(đpcm)

d) Xét ΔABC có AB=AC(gt)

nên ΔABC cân tại A(Định nghĩa tam giác cân)

\(\widehat{B}=\widehat{C}\)

Ta có: AH+HB=AB(H nằm giữa A và B)

AK+KC=AC(K nằm giữa A và C)

mà AB=AC(gt)

và AH=AK(gt)

nên HB=KC

Xét ΔHBM và ΔKCM có 

HB=KC(cmt)

\(\widehat{B}=\widehat{C}\)(cmt)

BM=MC(M là trung điểm của BC)

Do đó: ΔHBM=ΔKCM(c-g-c)