Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn vẽ hình ra thì đọc mới hiểu nha !
a) Ta có : BB' vuông góc với d ( giả thiết ) }
MM' vuông góc với d ( giả thiết ) } => BB' // MM' // CC' ( từ vuông góc đến // )
CC' vuông góc với d ( giả thiết ) }
Xét hình thang BB'C'C ( BB' // C'C - chứng minh trên ) có :
M là trung điểm BC ( AM là trung tuyến - giả thiêt ) }
MM' // BB' ; MM' // CC' ( chứng minh trên ) } => M' là trung điểm BB'CC' ( định lí )
Xét hình thang BB'C'C có :
M là trung điểm BC ( AM là trung tuyến ) }
M' là trung điểm B'C' ( chứng minh trên ) } => MM' là đường trung bình của hình thang BB'C'C ( định lí )
=> MM' = BB' + CC' / 2 ( định lí )
ĐÓ MÌNH CHỈ BIẾT LÀM CÂU A) THÔI, XL BẠN NHA !!!
Gọi E là trung điểm của AG. Từ E và M kẻ 2 đường thẳng vuông góc với d lần lượt tại K và H.
G là trọng tâm \(\Delta\)ABC, AM là trung tuyến => AG=MG => 1/2AG=MG => EG=MG
=> \(\Delta\)EKG=\(\Delta\)MHG (Cạnh huyền góc nhọn) => EK=MH (2 cạnh tương ứng)
Xét \(\Delta\)AA'G: E là trung điểm AG; EK//AA' (Quan hệ song song vuông góc)
=> K là trung điểm A'G => EK là đường trung bình \(\Delta\)AA'G => EK=1/2AA'
=> MH=1/2AA' (Vì EK=MH). (1)
Xét hình thang BB'C'C: M là trung điểm BC, MH//BB'//CC'
=> MH là đường trung bình hình thang BB'C'C => MH=(BB'+CC')/2 (2)
Từ (1) và (2) => AA'=BB'+CC' (đpcm)
Ta có: BB’ ⊥ d (gt)
CC’ ⊥ d (gt)
Suy ra: BB’ // CC’
Tứ giác BB’CC’ là hình thang
Kẻ MM’ ⊥ d
⇒ MM’ // BB’ // CC’
Nên MM’ là đường trung bình của hình thang BB’CC’
⇒MM′=BB′+CC′2(1)⇒MM′=BB′+CC′2(1)
Xét hai tam giác vuông AA’O và MM’O:
ˆOA′A=ˆOM′MOA′A^=OM′M^
AO = MO (gt)
ˆAOA′=ˆMOM′AOA′^=MOM′^ (đối đỉnh)
Do đó: ∆ AA’O = ∆ MM’O (cạnh huyền, góc nhọn)
⇒ AA’ = MM’ (2)
Từ (1) và (2) suy ra: AA′=BB′+CC′2AA′=BB′+CC′/2.
+ Ta có
BB' vuông góc với d
CC' vuông góc với d
MM' vuông góc với d
=> BB'//CC'//MM' => BB'C'C là hình thang
+ Ta có BM=CM mà MM'//BB'//CC' => MM' là đường trung bình của hình thang
=> \(MM'=\frac{BB'+CC'}{2}\) (định lý đường trung bình của hình thang)
+ Xét tam giác vuông MM'G và tam giác vuông AA''G có
AA' vuông góc với d
MM' vuông góc với d
=> AA'//MM' => ^A'AG=^M'MG (góc so le trong)
=> tam giác AA'G đồng dạng với tam giác MM'G
=> \(\frac{MM'}{AA'}=\frac{MG}{AG}\) mà G là trọng tâm của tam giác ABC nên \(\frac{MM'}{AA'}=\frac{MG}{AG}=\frac{1}{2}\Rightarrow AA'=2MM'=2\frac{BB'+CC'}{2}=BB'+CC'\)
Mừn cám ơn nhé =))) Nhưng từ đoạn sole trong trở xuống mừn kh hiểu lắm =)) B giải thíc giùm với =))