Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Ta có: \(\widehat{ABC}+\widehat{ABE}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ACF}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABE}=\widehat{ACF}\)
Xét ΔABE và ΔACF có
AB=AC
\(\widehat{ABE}=\widehat{ACF}\)(cmt)
BE=CF
Do đó: ΔABE=ΔACF
=>AE=AF
=>ΔAEF cân tại A
b: Xét ΔBHE vuông tại H và ΔCKF vuông tại K có
BE=CF
\(\widehat{E}=\widehat{F}\)(ΔABE=ΔACF)
Do đó: ΔBHE=ΔCKF
c: Ta có: ΔBHE=ΔCKF
=>BH=CK và \(\widehat{HBE}=\widehat{KCF}\) và EH=KF
Ta có: AH+HE=AE
AK+KF=AF
mà HE=KF và AE=AF
nên AH=AK
Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AI chung
AH=AK
Do đó: ΔAHI=ΔAKI
=>IH=IK
=>ΔIHK cân tại I
a: Xét ΔABE và ΔACF có
AB=AC
góc ABE=góc ACF
BE=CF
=>ΔABE=ΔACF
=>AE=AF
b: Xét ΔBNE vuông tại N và ΔCMF vuông tại M có
BE=CF
góc BEN=góc CFM
=>ΔBNE=ΔCMF
=>BN=CM
c: góc IBC=góc NBE
góc ICB=góc MCF
góc NBE=góc MCF
=>góc IBC=góc ICB
=>IB=IC
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
\(\widehat{D}=\widehat{E}\)
Do đó: ΔBHD=ΔCKE
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
c: Xét ΔADE có
AH/AD=AK/AE
nên HK//DE
hay HK//BC
a) Ta có: góc ABC + góc ABD= 180o (kề bù)
góc ACB + góc ACE = 180o (kề bù)
mà góc ABC = góc ACB (tam giác ABC cân tại A)
=> góc ACE = góc ABD
Xét tam giác ABD và ACE có:
AB = AC (tam giác ABC cân tại A)
Góc ACE = góc ABD (cmt)
DB=CE (gt)
=> Tam giác ABD = tam giác ACE (c.g.c)
=> góc BAD = góc CAE (2 góc tương ứng)
Xét 2 tam giác vuông ABH và ACK có:
AB = AC (tam giác ABC cân tại A)
góc BAD = góc CAE (cmt)
=> Tam giác ABH = tam giác ACK (cạnh huyền - góc nhọn)
=>BH = CK (2 cạnh tương ứng)
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: \(\widehat{D}=\widehat{E}\)
Xét ΔHDB vuông tại H và ΔKEC vuông tại K có
BD=CE
\(\widehat{D}=\widehat{E}\)
Do đó: ΔHDB=ΔKEC
Suy ra: BH=CK
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
Do đó: ΔAHB=ΔAKC
a) vì tam giác ABC cân tại A nên góc ABC= góc ACB
mà góc ABC = góc HBD ( 2 góc đối đỉnh); góc ACB= góc KCE ( 2 góc đối đỉnh)
=> góc HBD= góc KCE
Xét tam giác HBD và tam giác KCE có :
góc DHB= góc EKC(= 90 độ)
BD=CE (gt)
góc HBD= góc KCE (cmt)
=>tam giác HBD = tam giác KCE (cạnh huyền, góc nhọn)
=>HB=KC( 2 cạnh tương ứng)
b)AHB=AKC ??? chưa rõ
mình cứ xét tam giác AHB và tam giác AKC, nếu là góc bạn tự suy ra thêm 1 bước nhé^^
vì tam giác ABC cân tại A nên góc ABC= góc ACB
mà góc ABC+ góc ABH= góc ACB+ góc ACK=180 độ ( 2 góc kề bù)
=>góc ABH=góc ACK
Xét tam giác AHB và tam giác AKC có:
AB=AC (tam giác ABC cân tại A)
góc ABH=góc ACK( Cmt)
HB=KC( Cmt)
a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ACE}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(Hai góc ở đáy của ΔBAC cân tại A)
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có
AB=AC(ΔABC cân tại A)
\(\widehat{ABD}=\widehat{ACE}\)(cmt)
BD=CE(gt)
Do đó: ΔABD=ΔACE(c-g-c)
Suy ra: AD=AE(hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
b) Xét ΔHBD vuông tại H và ΔKCE vuông tại K có
BD=CE(gt)
\(\widehat{HDB}=\widehat{KEC}\)(ΔADB=ΔAEC)
Do đó: ΔHBD=ΔKCE(cạnh huyền-góc nhọn)
c) Ta có: ΔHBD=ΔKCE(cmt)
nên \(\widehat{HBD}=\widehat{KCE}\)(hai góc tương ứng)
mà \(\widehat{HBD}=\widehat{OBC}\)(hai góc đối đỉnh)
và \(\widehat{KCE}=\widehat{OCB}\)(hai góc đối đỉnh)
nên \(\widehat{OBC}=\widehat{OCB}\)
Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)
nên ΔOBC cân tại O(Định nghĩa tam giác cân)
Sửa đề:
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho BE = CF
a) Chứng minh tam giác AEF cân
b) vẽ BH vuông góc AE, CK vuông góc AF. CM tam giác EBH bằng tam giác FCK.
Giải
a) Do ∆ABC cân tại A (gt)
⇒ AB = AC và ∠ABC = ∠ACB
Ta có:
∠ABC + ∠ABE = 180⁰ (kề bù)
∠ACB + ∠ACF = 180⁰ (kề bù)
Mà ∠ABC = ∠ACB (cmt)
⇒ ∠ABE = ∠ACF
Xét ∆ABE và ∆ACF có:
AB = AC (cmt)
∠ABE = ∠ACF (cmt)
BE = CF (gt)
⇒ ∆ABE = ∆ACF (c-g-c)
⇒ AE = AF (hai cạnh tương ứng)
⇒ ∆AEF cân tại A
b) Do ∆AEF cân tại A (cmt)
⇒ ∠AEF = ∠AFE
⇒ ∠HEB = ∠KFC
Xét hai tam giác vuông: ∆EBH và ∆FCK có:
BE = CF (gt)
∠HEB = ∠KFC (cmt)
⇒ ∆EBH = ∆FCK (cạnh huyền - góc nhọn)