Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi G là trọng tâm, M là trung điểm của BC
=>AG=2/3AM
BM+BE=EM
CM+CF=MF
mà BM=CM; BE=CF
nên EM=MF
=>M là trung điểm củaEF
Xet ΔAEF có
AM là trung tuyến
AG=2/3AM
=>G là trọng tâm của ΔAEF
b: G là trọng tâm cùa ΔAEF
=>N là trung điểm của AF
Xét ΔAEF có FM/FE=FN/FA
nên MN//AE và MN=1/2AE
Xét ΔGAE có GH/GA=GI/GE
nên HI//AE và HI=1/2AE
=>MN//HI và MN=HI
Kẻ trung tuyến AM của \(\Delta ABC\) và trên AM đặt \(AG=\frac{2}{3}AM\)
Xét \(\Delta GHI\) và \(\Delta GMN\) có : HG = \(\frac{1}{2}AG\) mà \(AG=\frac{2}{3}AM\)
nên \(HG=\frac{1}{2}.\frac{2}{3}AM=\frac{1}{3}AM;GM=\frac{1}{3}AM\)
Vậy HG = GM
tương tự ta có \(GI=CN=\frac{1}{3}EN;\widehat{HGE}=\widehat{NGM}\) (đối đỉnh)
\(\Rightarrow\Delta GHI=\Delta GMN\)
=> HI = MN ; \(\widehat{IHG}=\widehat{NMG}\) mà 2 góc này nằm ở vị trí so le trong => HI // MN
tự kẻ hình nghen:33333
a) vì AD cắt BE tại G mà AD, BE là hai đường trung tuyến=> G là trọng tâm của tam giác ABC
=> EG=1/3BE, BG=2/3BE
=> GD=1/3AD, AG=2/3AD
=> EG+EN=2*1/3BE (GE=EN)=> GN=2/3BE=> GN=BG=2/3BE
=> GD+DM=2*1/3AD (GD=DM)=> GM=2/3AD=> GM=AG=2/3AD
b) xét tam giác AGB và tam giác MGN có
GN=BG(cmt)
GM=AG(cmt)
AGB=MGN( đối đỉnh)
tam giác AGB=tam giác MGN (cgc)
MN=AB( hai cạnh tương ứng)
=> BAG=GMN( hai góc tương ứng)
mà BAG so le trong với GMN=> AB//MN
a: XétΔABC có \(\widehat{B}=\widehat{C}\)
nên ΔABC cân tại A
mà AD là tia phân giác
nên AD là đường cao
b: Xét ΔABE và ΔACF có
AB=AC
\(\widehat{ABE}=\widehat{ACF}\)
BE=CF
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
a: BM+BE=ME
MC+CF=MF
mà BM=MC và BE=CF
nên ME=MF
Xét ΔAEF có
AM là trung tuyến
AG=2/3AM
=>G là trọng tâm
b: Xét ΔAEF có
EN là trung tuyến
G là trọng tâm
=>E,G,N thẳng hàng
c: Xét ΔGAE có GH/GA=GI/GE
nên IH//AE và IH=1/2AE
=>IH//MN và IH=MN