Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình không vẽ hình, bạn tự vẽ nhé!
a) M là trung điểm của BC \(\Rightarrow BM=MC\)
Xét \(\Delta BAM\)và \(\Delta CDM\)có:
MA=MD ( giả thiết )
\(\widehat{BMA}=\widehat{CMD}\)( tính chất đối đỉnh )
BM=MC ( chứng minh trên )
\(\Rightarrow\Delta BAM=\Delta CDM\)( c.g.c )
b) Xét \(\Delta ACM\)và \(\Delta DBM\)có:
MA=MD ( giả thiết )
\(\widehat{BMD}=\widehat{CMA}\)( tính chất đối đỉnh )
BM=MC ( chứng minh trên )
\(\Rightarrow\Delta ACM=\Delta DBM\)( c.g.c )
\(\Rightarrow AC=BD\)( 2 cạnh tương ứng )
\(\Rightarrow\widehat{MAC}=\widehat{MDB}\)( 2 góc tương ứng ) ở vị trí so lê trong
\(\Rightarrow\)AC//BD
c) Đề bài không rõ ràng mình không làm được
d) Đề bài không rõ ràng mình không làm được
Chúc bạn học tốt!
a) Trên tia đối tia MA lấy điểm F sao cho AM = AF (*)
Xét tam giác BFM và tam giác ACM có:
AM = FM (theo *)
Góc BMF = góc AMC (2 góc đối đỉnh)
BM = CM (vì M là trung điểm của BC)
=> Tam giác BFM = tam giác CAM (c.g.c)
=> AC = BF (2 cạnh tương ứng)
Vì AC = AE (gt) nên AE = BF
Ta có: góc F = góc CAM (vì tam giác BFM = tam giác CAM)
Mà 2 góc này ở vị trí so le trong
=> BF // AC (dấu hiệu nhận biết)
=> Góc BAC + góc ABF = 180 độ (2 góc trong cùng phía)
Mà góc BAC + góc DAE = 180 độ
=> Góc DAE = góc ABF
Xét tam giác ABF và tam giác ADE có:
AB = AD (gt)
Góc DAE = góc ABF (chứng minh trên)
AE = BF (2 cạnh tương ứng)
=> Tam giác ADE = tam giác BAF (c.g.c)
=> AF = DE (2 cạnh tương ứng)
Lại có: AM = AF : 2 => AM = DE : 2 (đpcm)
b) Gọi giao điểm của AM và DE là N
Ta có: tam giác ADE = tam giác BAF (chứng minh trên)
=> Góc D = góc BAF (2 góc tương ứng)
Mà góc BAF + góc DAN = 180 độ - góc BAD = 180 độ - 90 độ = 90 độ
=> Góc D + góc DAN = 90 độ
=> Tam giác ADN vuông tại N
hay AM _|_ DE (đpcm)