K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TH
Thầy Hùng Olm
Manager VIP
31 tháng 5 2023

SBCN = 2 x SBNI = 48 (m2

(2 tam giác chung đỉnh B và I là trung điểm CN)

SCMN =  SCNB : 2 = 48: 2 = 24 (m2

(2 tam giác chung đỉnh C và BN = 2 MN)

SBMC = SCNB + SCMN = 48 + 24 = 72 (m2

SBAM = SBMC : 2 = 72 : 2 = 36(m2

SABC = SBAM + SBMC = 36 + 72 = 108 (m2)

  \(\dfrac{S_{ABC}}{S_{BNI}}=\dfrac{108}{24}=\dfrac{9}{2}\)

 

18 tháng 1 2023

Ai giúp mình vớiiiii

 

10 tháng 2 2022
Giúp tớ câu này
6 tháng 4 2022

ABCD 20=2CM

2 tháng 4 2016

Nối A với O. 

Ta có:  SABN = 1/3 SBNC  nên đường cao kẻ từ A và C xuống NB có tỉ lệ 1/3

Suy ra  SABO = 1/3 SBOC (chung đáy OB)

Tương tự:

SAMC = 1/2SBMC nên dường cao kẻ từ A và B xuống MC có tỉ lệ 1/2

Suy ra      SAOC = 1/2 SBOC (chung đáy OC)

Từ đó ta có:  SAOC + SAOB = (1/3+1/2)SBOC = 5/6 SBOC

SAOC + SAOB  có 5 phần thì SBOC có 6 phần và SABC có (5+6) 11 phần

Vậy:     AOCB = 6/11 SABC

10 tháng 12 2023

Giả sử \(\vec{AB} = \mathbf{a}\), \(\vec{AD} = \mathbf{b}\), và \(\vec{AM} = \frac{1}{2}\vec{AC}\). 

 

Vì \(ABCD\) là hình thoi, nên \(\vec{AB} = \vec{DC} = -\vec{CB}\).

 

Do đó, \(\vec{CB} = -\mathbf{a}\) và \(\vec{AM} = \frac{1}{2}(\vec{AC}) = \frac{1}{2}(\vec{AD} + \vec{DC}) = \frac{1}{2}(\mathbf{b} - \mathbf{a})\).

 

Bây giờ, tính tích vô hướng \(\vec{MA} \times \vec{CB}\):

 

\[\vec{MA} \times \vec{CB} = \frac{1}{2}(\mathbf{b} - \mathbf{a}) \times (-\mathbf{a})\]

 

Sử dụng tích vô hướng của vecto, ta có:

 

\[\vec{MA} \times \vec{CB} = \frac{1}{2}(\mathbf{b} \times (-\mathbf{a})) - \frac{1}{2}(\mathbf{a} \times (-\mathbf{a})\]

 

Với \(\mathbf{b} \times (-\mathbf{a}) = -(\mathbf{a} \times \mathbf{b})\), và \(\mathbf{a} \times (-\mathbf{a}) = -\|\mathbf{a}\|^2\), ta có:

 

\[\vec{MA} \times \vec{CB} = \frac{1}{2}(\mathbf{a} \times \mathbf{b}) + \frac{1}{2}\|\mathbf{a}\|^2\]

 

Nếu bạn có thông tin cụ thể về \(\mathbf{a}\) và \(\mathbf{b}\), bạn có thể tính toán giá trị này.

Nối A với I :

Ta có : S ( AMI ) = 1/2 S ( BMI ) ( vì đáy AM = 1/2 đáy BM ; chung chiều cao hạ từ I xuống AB )

S ( ANI ) = 1/2 S ( CNI )

Mà S ( CNI ) = S ( BMI ) nên S ( AMI ) = S ( ANI ) = 90 : 2 = 45 cm2

\(\Rightarrow\) S ( AIB ) = 3 x S ( AMI ) = 3 x 45 = 135 cm2

\(\Rightarrow\) S ( ABN ) = S ( AIB ) + S ( AIN ) = 135 + 45 = 180 cm2

\(\Rightarrow\) S ( ABC ) = 3 x S ( ABN ) = 3 x 180 = 540 cm2

18 tháng 2 2022
Haha!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6 tháng 4 2022

1MM=10CM

17 tháng 2 2022

-Lớp 5 làm gì biết dấu nhân trong \(AM=\dfrac{1}{4}AB\) được ẩn?

17 tháng 2 2022

biết rồi

học cái đấy rồi