K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

A B C D E M N O I 1 2 d

a) Ta có:  ^ECN=^ACB (Đối đỉnh). Mà tam giác ABC cân tại A => ^ACB=^ABC => ^ECN=^ABC hay ^ECN=^DBM.

Xét tam giác ECN và tam giác DBM có: 

^DMB=^ENC=900

CE=BD                     => Tam giác ECN=Tam giác DBM (Cạnh huyền góc nhọn)

^ECN=^DBM

=> CN=BM (2 cạnh tương ứng) => CN+MC=BM+MC (Cộng mỗi vế với MC) => MN=BC (đpcm)

Tam giác ECN=Tam giác DBM (cmt) => EN=DM (2 cạnh tương ứng)

DM và EN đều vuông góc với BC => DM//EN => ^MDI=^NEI (So le trong)

Xét tam giác DMI và tam giác ENI có:

^DMI=^ENI=900

DM=EN (cmt)      => Tam giác DMI=Tam giác ENI (g.c.g)

^NDI=^NEI

=> DI=EI => I là trung điểm của DE (đpcm)

b) AO là phân giác của ^BAC => ^A1=^A2.

Xét tam giác ABO và tam giác ACO có:

AB=AC

^A1=^A2         => Tam giác ABO=Tam giác ACO (c,g,c)

AO chung

=>  ^ABO=^ACO (2 góc tương ứng) (1)

Do tam giác ABC cân tại A và AO là đường phân giác => AO cũng là đương trung trực của tam giác ABC.

=> OB=OC (Tính chất đường trung trực của đoạn thẳng)

Ta có: Điểm O thuộc d, d là trung trực của DE => OD=OE

Xét tam giác DBO và tam giác ECO có:

OB=OC

BD=CE    => Tam giác DBO=Tam giác ECO (c.c.c)

OD=OE

=> ^DBO=^ECO (2 góc tương ứng) hay ^ABO=^ECO (2)

Từ (1) và (2) => ^ACO=^ECO. Mà 2 góc này là 2 góc kề bù => ^ACO=^ECO=900

=> OC vuông góc với AE hay OC vuông góc AC (đpcm).

29 tháng 3 2021

ssssssssssssssssssssssssssssssssssssssssssssssssssssssaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

 

11 tháng 2 2021

A) Xét ΔABD và ΔEBD có:

+) AB=BE (gt)

+) góc ABD= góc EBD (do BD là phân giác góc B)

+) BD chung

=> ΔABD = ΔEBD (c-g-c)

b)

Qua C kẻ đường thẳng vuông góc với BD tại H.

Xét ΔBCF có: BH là đường cao đồng thời là phân giác của góc B

=> ΔBCF cân tại B (tính chất)

=> BC= BF (điều phải chứng minh)

c)

Xét ΔABC và ΔEBF có:

+) AB = EB (gt)

+) góc B chung

+) BC= BF (câu b)

=> ΔABC = ΔEBF (c-g-c)

d)

Từ ý a, ΔABD = ΔEBD (c-g-c)

=> góc BAD= góc BED = 90

=> DE ⊥ BC

Xét ΔBCF có: BH và CA là 2 đường cao cắt nhau tại D

=> D là trực tâm

=> FD ⊥ BC 

=> DE trùng với FD

=> D,E,F thẳng hàng