Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔCBE có AM//BE
nên \(\dfrac{AM}{BE}=\dfrac{CM}{CB}\)
Xét ΔBDC có AM//DC
nên \(\dfrac{AM}{DC}=\dfrac{BM}{BC}\)
\(\dfrac{AM}{BE}+\dfrac{AM}{DC}=\dfrac{BM}{BC}+\dfrac{CM}{BC}\)
=>\(AM\left(\dfrac{1}{BE}+\dfrac{1}{DC}\right)=\dfrac{BC}{BC}=1\)
=>\(\dfrac{1}{AM}=\dfrac{1}{BE}+\dfrac{1}{CD}\)
a: BD/CD=AB/AC=1/2
b: Xét ΔAMB và ΔABC có
AM/AB=AB/AC
góc MAB=góc BAC
=>ΔAMB đồng dạng với ΔABC
Bai 1
Bo de : \(\Delta ABC\) trung tuyen AD
\(\Rightarrow S_{ADB}=S_{ADC}\)
cai nay ban tu chung minh nha
Ap dung bo de va bai nay => \(S_{MNPQ}=S_{MQP}+S_{MNP}=\frac{1}{3}S_{MDC}+\frac{1}{3}S_{ABP}\)
ta phai chung minh \(S_{MDC}+S_{ABP}=S_{ABCD}\)
That vay co \(S_{AMP}=S_{AMD},S_{MBP}=S_{MBC}\)
=> \(S_{ABP}+S_{MDC}=S_{ADM}+S_{MDC}+S_{MBC}=S_{ABCD}\)
=> dpcm
\(\Delta ABC\) có:
\(\dfrac{AM}{AB}=\dfrac{8}{12}=\dfrac{2}{3}\)
\(\dfrac{AN}{AC}=\dfrac{12}{15}=\dfrac{2}{3}\)
\(\Rightarrow\dfrac{AM}{AB}=\dfrac{AN}{AC}=\dfrac{2}{3}\)
\(\Rightarrow\) MN // BC (định lý Ta-lét)
\(\Delta AME\) và \(\Delta ABD\) có:
ME // BD (do MN // BC)
\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AM}{AB}=\dfrac{2}{3}\) (hệ quả của định lý Ta-lét)