K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2019

A B C D N M P Q

a) Ta có : \(\frac{S_{APQ}}{S_{AMN}}=\frac{S_{APQ}}{S_{APN}}.\frac{S_{APN}}{S_{AMN}}=\frac{AQ}{AN}.\frac{AP}{AM}\)

Ta cần tính tỉ số \(\frac{AQ}{AN},\frac{AP}{AM}\)

Thật vậy, ta có : \(\frac{AQ}{QN}=\frac{AB}{DN}=3\Rightarrow\frac{AQ}{AQ+QN}=\frac{3}{4}\Rightarrow\frac{AQ}{AN}=\frac{3}{4}\)

\(\frac{AP}{PM}=\frac{AD}{BM}=2\Rightarrow\frac{AP}{AP+PM}=\frac{2}{3}\Rightarrow\frac{AP}{AM}=\frac{2}{3}\)

Do đó : \(\frac{AQ}{AN}.\frac{AP}{AM}=\frac{3}{4}.\frac{2}{3}=\frac{1}{2}\)

Vậy \(S_{APQ}=\frac{1}{2}.S_{AMN}\)

b) Ta có : \(\frac{CN}{ND}=2.\frac{BM}{MC}\)

đặt \(\frac{BM}{MC}=k\)thì \(\frac{CN}{ND}=2k\)

Đặt MC = x thì BM = kx . đặt ND = y thì CN = 2ky

ta có : \(\frac{AP}{PM}=\frac{AD}{BM}=\frac{x+kx}{kx}=\frac{k+1}{k}\Rightarrow\frac{AP}{AP+PM}=\frac{k+1}{2k+1}\)

\(\Rightarrow\frac{AP}{AM}=\frac{k+1}{2k+1}\)                                                               ( 1 )

Mặt khác, \(\frac{AQ}{QN}=\frac{AB}{DN}=\frac{2k+1}{1}\Rightarrow\frac{AQ}{AQ+QN}=\frac{2k+1}{2k+2}\Rightarrow\frac{AQ}{AN}=\frac{2k+1}{2k+2}\)           ( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(\frac{AP}{AM}.\frac{AQ}{AN}=\frac{k+1}{2k+1}.\frac{2k+1}{2k+2}=\frac{1}{2}\)

Vậy \(S_{APQ}=\frac{1}{2}.S_{AMN}\)

AH
Akai Haruma
Giáo viên
23 tháng 2 2018

Lời giải:

Vì \(AB\parallel DC\) nên áp dụng định lý Thales:

\(\frac{AQ}{QN}=\frac{AB}{DN}=\frac{DC}{DN}=3\)

\(\Rightarrow \frac{AQ}{AN}=\frac{3}{4}\)

Vì \(AD\parallel BC\) nên áp dụng định lý Thales:

\(\frac{AP}{PM}=\frac{AD}{BM}=\frac{BC}{BM}=2\)

\(\Rightarrow \frac{AP}{AM}=\frac{2}{3}\)

Kẻ \(QL, NT\perp AM\) \((L,T\in AM)\)

\(\Rightarrow QL\parallel NT\Rightarrow \frac{QL}{NT}=\frac{AQ}{AN}\) (theo định lý Thales)

Ta có:

\(\frac{S_{APQ}}{S_{AMN}}=\frac{QL.AP}{NT.AM}=\frac{QL}{NT}.\frac{AP}{AM}=\frac{AQ}{AN}.\frac{AP}{AM}=\frac{3}{4}.\frac{2}{3}=\frac{1}{2}\)

(đpcm)