Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{DC}.\overrightarrow{MN}=\overrightarrow{DC}.\left(\overrightarrow{BN}-\overrightarrow{BM}\right)\)
\(=\overrightarrow{DC}.\overrightarrow{BN}-\overrightarrow{DC}.\overrightarrow{BM}\)
\(=-\overrightarrow{DC}.\dfrac{1}{2}\overrightarrow{AB}-\overrightarrow{DC}.\dfrac{3}{4}\overrightarrow{BC}\)
\(=-\dfrac{1}{2}AB^2-\dfrac{3}{4}DC.BC.cos90^o\)
\(=-\dfrac{1}{2}.2^2=-2\Rightarrow A\)
\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)
Có \(\overrightarrow{MB}=2\overrightarrow{MC}\Leftrightarrow\overrightarrow{MA}+\overrightarrow{AB}=2\overrightarrow{MA}+2\overrightarrow{AC}\)
\(\Leftrightarrow\overrightarrow{AM}=2\overrightarrow{AC}+\overrightarrow{BA}\)
Lời giải:
Theo đề ta có: $\overrightarrow{BM}=2\overrightarrow{MC}=-2\overrightarrow{CM}$
$\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}(1)$
$=\overrightarrow{AB}-2\overrightarrow{CM}$
$\overrightarrow{AM}=\overrightarrow{AC}+\overrightarrow{CM}$
$\Rightarrow 2\overrightarrow{AM}=2\overrightarrow{AC}+2\overrightarrow{CM}(2)$
Lấy $(1)+(2)\Rightarrow 3\overrightarrow{AM}=\overrightarrow{AB}+2\overrightarrow{AC}$
$\Rightarrow \overrightarrow{AM}=\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$
Gọi M là trung điểm BC
+) vecto AI=vecto IG=vecto GM
+) vecto AI=1/3vecto AM=1/3(vecto CM-vecto CA)=2/3vecto CB-1/3vecto CA
+) vecto AK=1/5vecto AB=1/5vecto CB-1/5vectoCA
+) vecto CK=vecto CA+vecto AK=vecto CA+1/5vecto AB
=vecto CA+1/5vecto CB-1/5vecto CA=1/5vecto CB+4/5vecto CA
+)vecto CI=vecto CA+vecto AI= vecto CA+1/3vecto AM
=vecto CA+1/3vecto AC+1/6vecto CB=2/3vecto CA+1/6vecto CB
b/
+) vecto CI =2/3vecto CA+1/6vecto CB=5(4/30vecto CA+1/30vecto CB)
+) vecto CK=6(4/30vecto CA+1/30vecto CB)
do đó 1/5vecto CI=1/6vecto CK
Nên C,I,K thẳng hàng.
Bài 2:
vecto AM=vecto AB+vecto BM
=vecto AB+2/3vecto BC
=vecto AB+2/3*(vecto BA+vecto AC)
=1/3*vecto AB+2/3*vecto AC