Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình vẽ bạn thay điểm P thành điểm K nhé.
Ta có:
\(\frac{S_{BOC}}{S_{ABC}}=\frac{\frac{1}{2}BC.OM}{\frac{1}{2}BC.AM}\)
\(\Rightarrow\frac{S_{BOC}}{S_{ABC}}=\frac{OM}{AM}.\)
Lại có:
\(\frac{S_{AOC}}{S_{ABC}}=\frac{\frac{1}{2}ON.CM}{\frac{1}{2}BN.CM}\)
\(\Rightarrow\frac{S_{AOC}}{S_{ABC}}=\frac{\frac{1}{2}ON}{\frac{1}{2}BN}\)
\(\Rightarrow\frac{S_{AOC}}{S_{ABC}}=\frac{ON}{BN}.\)
Có:
\(\frac{S_{AOB}}{S_{ABC}}=\frac{\frac{1}{2}OK.AB}{\frac{1}{2}CK.AB}\)
\(\Rightarrow\frac{S_{AOB}=\frac{1}{2}OK}{S_{ABC}=\frac{1}{2}CK}\)
\(\Rightarrow\frac{S_{AOB}}{S_{ABC}}=\frac{OK}{CK}.\)
\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OK}{CK}=\frac{S_{BOC}}{S_{ABC}}+\frac{S_{AOC}}{S_{ABC}}+\frac{S_{AOB}}{S_{ABC}}\)
\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OK}{CK}=\frac{S_{BOC}+S_{AOC}+S_{AOB}}{S_{ABC}}\)
\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OK}{CK}=\frac{S_{ABC}}{S_{ABC}}\)
\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OK}{CK}=1\left(đpcm\right).\)
Chúc bạn học tốt!
Gọi T là giao điểm của DE và AB. Qua F kẻ đường thẳng song song với BC cắt DA, DT lần lượt tại U, V.
Áp dụng định lý Menelaus cho tam giác ABC, cát tuyến TED, ta có:
\(\dfrac{TA}{TB}.\dfrac{DB}{DC}.\dfrac{EC}{EA}=1\)
Áp dụng định lý Ceva cho tam giác ABC với AD, BE, CF đồng quy tại O, ta có:
\(\dfrac{FA}{FB}.\dfrac{DB}{DC}.\dfrac{EC}{EA}=1\)
Từ đó suy ra \(\dfrac{TA}{TB}=\dfrac{FA}{FB}\Leftrightarrow\dfrac{TA+FA}{TB}=\dfrac{2FA}{TB}\) \(\Leftrightarrow\dfrac{TF}{TB}=\dfrac{2AF}{AB}\)
Mà theo định lý Thales:
\(\dfrac{TF}{TB}=\dfrac{FV}{BD}\) và \(\dfrac{AF}{AB}=\dfrac{FU}{BD}\)
Từ đó suy ra \(\dfrac{FV}{BD}=\dfrac{2FU}{BD}\) \(\Rightarrow FV=2FU\) hay U là trung điểm FV.
Áp dụng bổ đề hình thang, ta dễ dàng suy ra O là trung điểm MN hay \(OM=ON\) (đpcm).
(Bổ đề hình thang phát biểu như sau: Trung điểm của 2 cạnh đáy, giao điểm của 2 đường chéo và giao điểm của 2 đường thẳng chứa 2 cạnh bên của một hình thang thì thẳng hàng. Chứng minh khá dễ, mình nhường lại cho bạn tự tìm hiểu nhé.)
Chỗ biến đổi này mình làm lại nhé:
Cần chứng minh: \(\dfrac{TF}{TB}=\dfrac{2AF}{AB}\)
\(\Leftrightarrow TF.AB=2AF.TB\)
\(\Leftrightarrow\left(TA+AF\right)\left(AF+BF\right)=2AF\left(TA+AF+BF\right)\)
\(\Leftrightarrow TA.AF+TA.BF+AF^2+AF.BF=2TA.AF+2AF^2+2AF.BF\)
\(\Leftrightarrow TA.AF+AF^2+AF.FB=TA.BF\)
\(\Leftrightarrow AF\left(TA+AF+FB\right)=TA.BF\)
\(\Leftrightarrow AF.TB=TA.BF\)
\(\Leftrightarrow\dfrac{TA}{TB}=\dfrac{FA}{FB}\) (luôn đúng)
Vậy \(\dfrac{TF}{TB}=\dfrac{2AF}{AB}\)
Từ A kẻ đường thẳng // BC cắt BO, CO kéo dài tại P và Q
Theo định lý Thales ta có: \(\frac{DB}{DC}=\frac{AP}{AQ},\frac{EC}{EA}=\frac{BC}{AP},\frac{FA}{FB}=\frac{AQ}{BC}\)
Nhân 3 đẳng thức vs nhau ta đc:
\(\frac{DB}{DC}.\frac{EC}{EA}.\frac{FA}{FB}=\frac{AP}{AQ}.\frac{BC}{AP}.\frac{AQ}{BC}=1\) ( ĐPCM)
Dễ thấy:\(\frac{OM}{AM}=\frac{S_{BOC}}{S_{ABC}};\frac{OB}{BN}=\frac{S_{AOC}}{S_{ABC}};\frac{OK}{CK}=\frac{S_{AOB}}{S_{ABC}}\)
\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OK}{CK}=\frac{S_{ABC}}{S_{ABC}}=1\)
sao dễ thấy vậy bạn mình k hiểu