Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, tam giác ABC cân tại A (gt)
=> góc ABC = góc ACB (đl)
góc ACB = góc ECN (đối đỉnh)
=> góc ABC = góc ECN
xét tam giác BDM và tam giác ECN có : BD = CE (gt)
góc MDB = góc CEN = 90
=> tam giác BDM = tam giác ECN (cgv-gnk)
=> DM = EN (đn)
b, MD _|_ BC (gt)
NE _|_ BC (gT)
=> MD // EN (Đl)
=> góc DMI = góc INE (slt)
xét tam giác DMI và tam giác ENI có : góc MDI = góc NEI = 90
MD = EN (Câu a)
=> tam giác DMI = tam giác ENI (cgv-gnk)
=> DI = IE (đn) mà I nằm giữa D và E
=> I là trđ của DE (đn)
c, xét tam giác ABO và tam giác ACO có : AO chung
AB = AC do tam giác ABC cân tại A (gT)
góc ABO = góc ACO = 90
=> tam giác ABO = tam giác ACO (ch-cgv)
=> BO = CO (đn)
=> O thuộc đường trung trực của BC (đl)
AB = AC (cmt) => A thuộc đường trung trực của BC (Đl)
=> AO là trung trực của BC
Hình tự vẽ nha.
a, Xét \(\Delta MBD\)và \(\Delta NEC\)có:
\(CE=BD\left(gt\right)\)
\(\widehat{NEC}=\widehat{MDB}=90^0\)
\(\widehat{MBD}=\widehat{NCE}\left(=\widehat{ACD}\right)\)
\(\Rightarrow\Delta MBD=\Delta NEC\left(cgv-gnk\right)\)
\(\Rightarrow MD=EN\left(2c.t.ứ\right)\)
b, Xét \(\Delta MID\)và \(\Delta NIE\) có:
\(\widehat{MDI}=\widehat{NEI}=90^0\)
\(EN=MD\left(cmt\right)\)
\(\widehat{MID}=\widehat{NIE}\left(đ.đ\right)\)
\(\Rightarrow\Delta MID=\Delta NIE\left(cgv-gn\right)\)
\(\Rightarrow ID=IE\left(2.c.t.ứ\right)\)
\(\Rightarrow I\) là giao điểm của \(DE\)
c, Xét \(\Delta ABO\) và \(\Delta ACO\) có:
\(AB=AC\)
\(\widehat{ABO}=\widehat{ACO}=90^0\)
\(AO\) là cạnh chung
\(\Rightarrow\text{}\)\(\Delta ABO=\Delta ACO\left(ch-cgv\right)\)
\(\Rightarrow\widehat{BAO}=\widehat{CAO}\left(2g.t.ứ\right)\)
\(\Rightarrow AO\)là đường phân giác trong \(\Delta ABC\) cân tại \(A\)
\(\Rightarrow AO\) là đường trung trực của \(BC\)
a . Xét ΔABC ⊥ tại A , ta có :
\(\widehat{ABC} \) + \(\widehat{ACB}\) = 90o ( 2 góc nhọn phụ nhau )
35o + \(\widehat{ACB}\) = 90o
⇒ \(\widehat{ACB}\) = 55o
b . Xét ΔBEA và ΔBED, ta có :
\(\left\{{}\begin{matrix}BA=BD\left(gt\right)\\\widehat{ABE}=\widehat{DBE}\\BE-BE\end{matrix}\right.\)
⇒ ΔBEA = ΔBED ( cạnh chung )
thêm vào chỗ góc ABE = góc DBE là ( BE là tia pg của góc ABC ) và BE=BE ( cạnh chung ) hộ mình nhá :3
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
BA=BE
=>ΔBAD=ΔBED
=>AD=ED
b: BA=BE
DA=DE
=>BD là trung trực của AE
AD=DE
DE<DC
=>AD<DC
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>E,D,F thẳng hàng
a: BC=15cm
Xét ΔABC có AC<AB<BC
nên \(\widehat{B}< \widehat{C}< \widehat{A}\)
b: Xét ΔEAD có
EC là đường cao
EC là đường trung tuyến
DO đó: ΔEAD cân tại E
c: Xét ΔDAB có
C là trung điểm của AD
CE//AB
Do đó: E là trung điểm của BD