K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2015

https://vi.wikipedia.org/wiki/%C4%90%E1%BB%8Bnh_l%C3%BD_Ceva

 

Theo định lý Ceva ta có:

\(\frac{SinABM}{SinMBC}.\frac{SinBAD}{SinDAC}.\frac{SinACH}{SinHCB}=1\)

Vì BAD = DAC nên \(\frac{SinACH}{SinHCB}.\frac{SinABM}{SinMBC}=1\)

SinACH = CosA; SinHCB = CosB

=> .\(CosA.\frac{SinABM}{SinCBM}=CosB\) (1)

Diện tích tam giác ABM là: \(\frac{1}{2}SinABM.BM.AB\)

Diện tích tam giác BMC là: \(\frac{1}{2}SinMBC.BM.BC\)

Mà diện tích 2 tam giác này bằng nhau nên \(\frac{SinABM}{SinMBC}=\frac{AB}{BC}\)

(1) => \(CosA\frac{AB}{BC}=CosB\) 

=> AB.CosA = BC.CosB

19 tháng 7 2018

Bài 1:

B A C H D

              \(BC=CD+BD=68+51=119\)

\(AD\)là phân giác  \(\widehat{BAC}\)\(\Rightarrow\)\(\frac{BD}{AB}=\frac{DC}{AC}\)hay     \(\frac{51}{AB}=\frac{68}{AC}\)

\(\Leftrightarrow\)\(\frac{51^2}{AB^2}=\frac{68^2}{AC^2}=\frac{51^2+68^2}{AB^2+AC^2}=\frac{25}{49}\)

suy ra:    \(\frac{51^2}{AB^2}=\frac{25}{49}\)\(\Rightarrow\)\(AB=71,4\)

ÁP dụng hệ thức lượng ta có:

           \(AB^2=BH.BC\)

\(\Leftrightarrow\)\(BH=\frac{AB^2}{BC}=\frac{71,4^2}{119}=42,84\)

\(\Rightarrow\)\(CH=BC-BH=119-42,84=76,16\)

19 tháng 7 2018

Bài 2:

B A C H

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Leftrightarrow\)\(BH^2=AB^2-AH^2\)

\(\Leftrightarrow\)\(BH^2=7,5^2-6^2=20,25\)

\(\Leftrightarrow\)\(BH=4,5\)

Áp dụng hệ thức lượng ta có:

       \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}=\frac{7,5^2}{4,5}=12,5\)

       \(AB.AC=BC.AH\)

\(\Rightarrow\)\(AC=\frac{BC.AH}{AB}=\frac{12,5.6}{7,5}=10\)

b)   \(cosB=\frac{AC}{BC}=\frac{10}{12,5}=0.8\)

      \(cosC=\frac{AB}{BC}=\frac{7,5}{12,5}=0,6\)