Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC có
AD là tia phân giác
=> \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)(tính chất tia phân giác)
\(\Rightarrow\dfrac{DB}{DC}=\dfrac{1}{2}\Rightarrow DC=2DB\)
Áp dụng tính chất đường phân giác trong tam giác ABC
\(\Rightarrow\frac{AB}{AC}=\frac{BD}{DC}\)
MÀ DC=2BD
\(\frac{\Rightarrow AB}{AC}=\frac{BD}{2BD}=\frac{1}{2}\Rightarrow AC=2AB\)
Chúc bạn học tốt
__________ T I C K nha __________
tam giác ABC có AD là tia phan giác góc A
\(\Rightarrow\frac{AC}{AB}=\frac{DC}{DB}\)
MA \(DC=2DB\)
\(\Rightarrow\frac{AC}{AB}=\frac{2DB}{DB}=\frac{2}{1}\)
\(\Rightarrow AC=2AB\)
NẾU CÓ SAI BN THÔNG CẢM NHA
Vì AD là đường phân giác nên \(\frac{AB}{AC}=\frac{BD}{CD}\)(tính chất đường phân giác)
\(\Rightarrow\frac{AB}{AC}=\frac{BD}{CD}=\frac{BD}{2BD}=\frac{1}{2}\)
\(\Rightarrow AC=2AB\left(đpcm\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{AB}{2\cdot AB}=\dfrac{1}{2}\)
hay DC=2DB
1:
AB=1/2AC=AM=MC
=>AB=2AE=2EM=MC
Xet ΔABC và ΔAEB có
AB/AE=AC/AB=2
góc A chung
=>ΔABC đồng dạng với ΔAEB
2: AM=AB
=>ΔAMB cân tại A
mà AG là phân giác
nên AG vuông góc BM và AG là đường trung tuyến ứng với cạnh MB
Xét ΔBAM có
BE,AG là trung tuyến
=>G là trọng tâm
3: CM/ME=2
CD/DB=2
=>CM/ME=CD/DB
=>MD//BG
=>MD/BE=CM/CE=2/3
=>MD=2/3BE=BG
=>BDMG làhình bình hành
mà GB=GM(G là trọng tâm của ΔAMB cân tại A)
nên BDMG là hình thoi