Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC có
AD là tia phân giác
=> \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)(tính chất tia phân giác)
\(\Rightarrow\dfrac{DB}{DC}=\dfrac{1}{2}\Rightarrow DC=2DB\)
Áp dụng tính chất đường phân giác trong tam giác ABC
\(\Rightarrow\frac{AB}{AC}=\frac{BD}{DC}\)
MÀ DC=2BD
\(\frac{\Rightarrow AB}{AC}=\frac{BD}{2BD}=\frac{1}{2}\Rightarrow AC=2AB\)
Chúc bạn học tốt
__________ T I C K nha __________
tam giác ABC có AD là tia phan giác góc A
\(\Rightarrow\frac{AC}{AB}=\frac{DC}{DB}\)
MA \(DC=2DB\)
\(\Rightarrow\frac{AC}{AB}=\frac{2DB}{DB}=\frac{2}{1}\)
\(\Rightarrow AC=2AB\)
NẾU CÓ SAI BN THÔNG CẢM NHA
Vì AD là đường phân giác nên \(\frac{AB}{AC}=\frac{BD}{CD}\)(tính chất đường phân giác)
\(\Rightarrow\frac{AB}{AC}=\frac{BD}{CD}=\frac{BD}{2BD}=\frac{1}{2}\)
\(\Rightarrow AC=2AB\left(đpcm\right)\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)
Vậy: BC=10cm; AD=3cm; CD=5cm
b) Ta có: \(\dfrac{CE}{CA}=\dfrac{4}{8}=\dfrac{1}{2}\)
\(\dfrac{CD}{CB}=\dfrac{5}{10}=\dfrac{1}{2}\)
Do đó: \(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)
Xét ΔCED và ΔCAB có
\(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)(cmt)
\(\widehat{C}\) chung
Do đó: ΔCED\(\sim\)ΔCAB(c-g-c)
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{AB}{2\cdot AB}=\dfrac{1}{2}\)
hay DC=2DB