K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2021

a) Ta có: AE,AF là tiếp tuyến \(\Rightarrow AE=AF\Rightarrow\Delta AEF\) cân tại A

\(\Rightarrow\angle AEF=\angle AFE\Rightarrow\angle BFX=\angle CEY\)

Xét \(\Delta BFX\) và \(\Delta CEY:\) Ta có: \(\left\{{}\begin{matrix}\angle BFX=\angle CEY\\\angle BXF=\angle CYE=90\end{matrix}\right.\)

\(\Rightarrow\Delta BFX\sim\Delta CEY\left(g-g\right)\Rightarrow\dfrac{BF}{CE}=\dfrac{BX}{CY}\)

mà \(\left\{{}\begin{matrix}BF=BD\\CE=CD\end{matrix}\right.\) (tính chất tiếp tuyến) \(\Rightarrow\dfrac{BD}{CD}=\dfrac{BX}{CY}\)

Vì \(BX\parallel DK\parallel CY\) \(\Rightarrow\dfrac{XK}{KY}=\dfrac{BD}{CD}\Rightarrow\dfrac{BX}{CY}=\dfrac{XK}{KY}\)

Xét \(\Delta BKX\) và \(\Delta CKY:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{BK}{CY}=\dfrac{KX}{KY}\\\angle BXK=\angle CYK=90\end{matrix}\right.\)

\(\Rightarrow\Delta BKX\sim\Delta CKY\left(c-g-c\right)\Rightarrow\angle BKX=\angle CKY\)

\(\Rightarrow90-\angle BKX=90-\angle CKY\Rightarrow\angle BKD=\angle CKD\)

\(\Rightarrow\dfrac{BK}{KC}=\dfrac{BD}{CD}\Rightarrow BD.CK=BK.CD\)

undefined

 

15 tháng 6 2019

A B C D E F O I H M K G P Q J L T

a) Gọi EF cắt AO tại T. Ta thấy AE,AF là các tiếp tuyến từ A tới (O) => OA là trung trực của EF

=> OA vuông góc EF tại T. Áp dụng hệ thức lượng trong tam giác vuông (\(\Delta\)AEO) có OE2 = OT.OA

=> OD2 = OT.OA. Từ đó \(\Delta\)DOT ~ \(\Delta\)AOD (c.g.c) => ^ODT = ^OAD

Cũng từ OA vuông góc EF tại T => ^OTI = 900 = ^ODI => Tứ giác DOTI nội tiếp (OI)

=> ^ODT = ^OIT. Mà ^ODT = ^OAD (cmt) nên ^OAD = ^OIT. Do ^OIT + ^IOT = 900 nên ^OAD + ^IOT = 900

Nếu gọi AD giao OI tại L thì ta có \(\Delta\)AOL vuông tại L hay DG vuông góc OI

Mà DG là một dây của (O) nên OI là trung trực của DG. Theo đó ^IGO = ^IDO = 900

Vậy thì IG tiếp xúc với (O) tại G (đpcm).

b) Gọi DJ là đường kính của (O). Từ B và C lần lượt hạ BP và CQ vuông góc với KJ (P,Q thuộc KJ)

Khi đó ta có ^DGJ = ^DKJ = 900 và BP // DK // CQ (Cùng vuông góc KJ)

Xét \(\Delta\)DGJ và \(\Delta\)AHD: ^DGJ = ^AHD = 900, ^GDJ = ^HAD (AH // DJ) => \(\Delta\)DGJ ~ \(\Delta\)AHD (g.g)

Chú ý M là trung điểm AH, L là trung điểm GD nên dễ có \(\Delta\)JGL ~ \(\Delta\)DHM (c.g.c)

=> ^GJL = ^HDM => ^OLJ = ^BDK (Do OL // GJ) = ^DJK (Vì BC tiếp xúc (O))

Theo câu a: DL vuông góc OI tại L, áp dụng hệ thức lượng trong tam giác vuông (\(\Delta\)ODI) có:

OD2 = OL.OI => OJ2 = OL.OI. Từ đây \(\Delta\)OLJ ~ \(\Delta\)OJI (c.g.c) => ^OLJ = ^OJI hay ^OLJ = ^DJI

Két hợp với ^OLJ = ^DJK (cmt) suy ra ^DJK = ^DJI. Mà K,I cùng phía so với DJ nên JK trùng JI

Hay K,I,J thẳng hàng. Kéo theo I,P,K,Q cũng thẳng hàng. Áp dụng hệ quả ĐL Thales có:

\(\frac{CQ}{BP}=\frac{IC}{IB}\). Lại có \(\frac{EA}{EC}.\frac{FB}{FA}.\frac{IC}{IB}=1\)(ĐL Melelaus) => \(\frac{IC}{IB}=\frac{EC}{FB}\)(Vì EA=FA)

Do đó \(\frac{CQ}{BP}=\frac{EC}{FB}=\frac{CD}{BD}=\frac{QK}{PK}\)(Theo tính chất 2 tiếp tuyến cắt nhau và ĐL Thales)

Kết hợp với ^BPK = ^CQK = 900  suy ra \(\Delta\)BPK ~ \(\Delta\)CQK (c.g.c) => ^BKP = ^CKQ

=> 900 - ^BKP = 900 - ^CKQ => ^BKD = ^CKD => KD là phân giác ^BKC (đpcm).

14 tháng 6 2019

Tứ giác nội tiếp

a) Đường tròn (O)(O) tiếp xúc với AB.BC,CAAB.BC,CA tại D,E,FD,E,F, tức là OO là giao của ba đường phân giác tam giác ABCABC và OD⊥AB,OF⊥AC,OE⊥BCOD⊥AB,OF⊥AC,OE⊥BC

Do đó: ODAˆ+OFAˆ=900+900=1800ODA^+OFA^=900+900=1800

⇒ODAF⇒ODAF là tứ giác nội tiếp.

Hoàn toàn tương tự: ODBE,OECFODBE,OECF nội tiếp.

Từ các tứ giác nội tiếp suy ra:

⎧⎩⎨ODFˆ=OAFˆ=Aˆ2ODEˆ=OBEˆ=Bˆ2{ODF^=OAF^=A^2ODE^=OBE^=B^2 ⇒ODFˆ+ODEˆ=Aˆ2+Bˆ2⇒ODF^+ODE^=A^2+B^2

hay EDFˆ=Aˆ+Bˆ2EDF^=A^+B^2

Tương tự: DEFˆ=Bˆ+Cˆ2DEF^=B^+C^2 và EFDˆ=Aˆ+Cˆ2EFD^=A^+C^2

Vì ABCABC là tam giác nhọn nên các góc đều nhỏ hơn 900900

⇒EDFˆ,DEFˆ,EFDˆ<900⇒EDF^,DEF^,EFD^<900

⇒△DEF⇒△DEF có 3 góc nhọn.

b)

Vì tam giác ABCABC cân tại AA nên ABCˆ=ACBˆABC^=ACB^

⇒ABCˆ=180−BACˆ2=900−Aˆ2⇒ABC^=180−BAC^2=900−A^2

Tứ giác ODAFODAF nội tiếp ⇒ADFˆ=AOFˆ=900−OAFˆ=900−Aˆ2⇒ADF^=AOF^=900−OAF^=900−A^2

Do đó: ABCˆ=ADFˆABC^=ADF^, hai góc này ở vị trí đồng vị nên DF∥BCDF∥BC

c)

{ABCˆ=ACBˆABCˆ=ADFˆ(theo phần b){ABC^=ACB^ABC^=ADF^(theo phần b) ⇒ADFˆ=ACBˆ=FCBˆ⇒ADF^=ACB^=FCB^

⇒BDFC⇒BDFC nội tiếp.

d)

BDBD là tiếp tuyến của (O)(O) nên BDMˆ=DFIˆ=DFBˆBDM^=DFI^=DFB^ (cùng chắn cung DI)

Mà do BDFCBDFC nội tiếp nên DFBˆ=DCBˆDFB^=DCB^

Từ đây suy ra BDMˆ=DCBˆBDM^=DCB^

Xét tam giác BDMBDM và BCDBCD có:

{∠B ChungBDMˆ=BCDˆ(cmt)⇒△BDM∼△BCD(g.g){∠B ChungBDM^=BCD^(cmt)⇒△BDM∼△BCD(g.g)

⇒BDBC=BMBD(1)⇒BDBC=BMBD(1)

Do DF∥BC⇒BDAB=CFACDF∥BC⇒BDAB=CFAC (theo định lý Ta -let) mà AB=AC⇒BD=CF(2)AB=AC⇒BD=CF(2)

Từ (1);(2)⇒BDBC=BMCF(1);(2)⇒BDBC=BMCF (đpcm

~Mik ko chắc~

a: ΔAHB vuông tại H có HM là đường cao

nên AM*AB=AH^2

ΔAHC vuông tại H có HN là đường cao

nên AN*AC=AH^2

=>AM*AB=AN*AC

=>AM/AC=AN/AB

=>góc AMN=góc ACB

=>góc NMB+góc NCB=180 độ

=>NMBC nội tiếp

b: kẻ đường kính AL

góc ACL=90 độ

AC*AN=AH^2

ΔAIN đồng dạng với ΔACE

=>AI/AC=AN/AE

=>AI*AE=AH^2

góc ADE=90 độ

=>ΔADE vuông tại D

=>AI*AE=AD^2=AH^2

=>AD=AH

8 tháng 2 2019

A B C D E F O I X Y Z M N P J S T R K L V G U Q

Gọi giao điểm thứ hai của AZ,BZ,CZ với đường tròn (O) là S,T,R. Cho đường thẳng DF cắt các đoạn ST,RT lần lượt tại K,L. Gọi AK giao CL tại V. Gọi Q là trung điểm đoạn DF. 

Trước hết, ta thấy: 5 điểm A,R,S,C,T cùng thuộc (O), AV cắt RT tại K, AS cắt CR ở Z, CV cắt ST ở L

Đồng thời có bộ điểm: (K Z L) thẳng hàng. Suy ra: Hệ điểm (A R V S C T) cùng thuộc 1 đường tròn (ĐL Pascal đảo)

Áp dụng ĐL Con Bướm cho 4 điểm A,B,S,T trên (O) thì có Z là trung điểm của FL. Mà P là trung điểm CF

Nên ZP là đường trung bình của \(\Delta\)FLC => ZP // CL. Tương tự: ZM // AK

Do đó: 2 góc ^MZP và ^AVC có 2 cặp cạnh song song => ^MZP = ^AVC = ^ABC (Do V thuộc (O) cmt)

Dễ thấy MQ là đường trung bình \(\Delta\)ADF => MQ // AB. Tương tự: QP // BC => ^MQP = ^ABC

Từ đó: ^MZP = ^MQP => Tứ giác MZQP nội tiếp đường tròn.

Nếu ta gọi trung điểm của DE,EF thứ tự là G,U thì như lập luận trên, các tứ giác NPUX, MYGN nội tiếp

Ta sẽ chứng minh các đường tròn (MPQ),(NPU),(MNG) đồng quy

Thật vậy: Gọi giao điểm thứ hai của (MPQ) và (NPU) là J => ^NJM = ^MJP + ^NJP = ^MQP + ^NUP

Bằng tính chất đường trung bình, góc có cặp cạnh song song dễ có:

^MQP = ^ABC, ^NUP = ^BAC => ^NJM = ^ABC + ^BAC = 1800 - ^ACB = ^MGN

Suy ra: Tứ giác MJNG nội tiếp => (MNG) cũng đi qua J => (MPQ),(NPU),(MNG) đồng quy

Hay 3 đường tròn (NPX),(YMN),(ZNP) đồng quy (tại J) (đpcm).

(P/S: Đề sai nhé, phải là (XNP),(YNM),(ZNP) đồng quy)

a: góc BEH+góc BKH=180 độ

=>BEHK nội tiếp

=>góc EBH=góc EKH

góc BKA=góc BDA=90 độ

=>ABKD nội tiếp

=>góc EBH=góc AKD=góc EKH

=>KA là phân giác của góc EKD

b: góc AIO=góc AJO=góc AKO=90 độ

=>I,J,K,A,O cùng thuộc đường tròn đường kính OA

sđ cung AI=sđ cung AJ

=>góc AKI=góc AJI

=>góc AKE+góc IKE=góc AKD+góc DKJ

=>góc IKE=góc DKJ

c: 

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.a) Chứng minh tứ giác AEHF là hình chữ nhậtb) Chứng minh tứ giác BEFC nội tiếpc) Gọi I là trung điểm của BC.Chứng minh AI vuông góc với EFd) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEFC.Tính diện tích hình tròn tâm K.B2: Cho ABC nhọn, đường tròn (O)...
Đọc tiếp

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.

a) Chứng minh tứ giác AEHF là hình chữ nhật

b) Chứng minh tứ giác BEFC nội tiếp

c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF

d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.

B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H

a) Chứng minh tứ giác ADHE nội tiếp

b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE

c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF

d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC

B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )

a) Chứng minh tứ giác OBAC nội tiếp

b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD

c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA

d) Tính diện tích tam giác BDC theo R

B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H

a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó

b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC

c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF

d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R

B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.

a) Chứng minh tứ giác AKHF nội tiếp đường tròn.

b) Chứng minh hai cung CI và CJ bằng nhau.

c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau

B6: Cho tam giác ABC nhọn nội tiếp đường tròn  ( O; R ),các đường cao BE, CF  .

a)Chứng minh tứ giác BFEC nội tiếp.

b)Chứng minh OA  vuông góc với EF.

3
27 tháng 5 2018

B1, a, Xét tứ giác AEHF có: góc AFH = 90o  ( góc nội tiếp chắn nửa đường tròn)

                                             góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )

                                             Góc CAB = 90o ( tam giác ABC vuông tại A)

=> tứ giác AEHF là hcn(đpcm)

b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF  = góc AHF ( hia góc nội tiếp cùng chắn cung AF)

mà góc AHF = góc ACB ( cùng phụ với góc FHC)

=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)

c,gọi M là giao điểm của AI và EF

ta có:góc AEF = góc ACB (c.m.t) (1)

do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA

hay tam giác IAB cân tại I => góc MAE = góc ABC (2)

mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong  một tam giác)

=>  ACB + góc ABC = 90o (3)

từ (1) (2) và (3) => góc AEF + góc MAE = 90o

=> góc AME = 90o (theo tổng 3 góc trong một tam giác)

hay AI uông góc với EF (đpcm)

1 tháng 4 2019

em moi lop 6 huhuhuhuhuhu

10 tháng 5 2019

mình hỏi rồi nè