K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

a) Hai tam giác IAB và ICA đồng dạng với nhau do có góc I chung và \(\widehat{IAB}=\widehat{ICA}\) (Tính chất của góc tạo bởi tia tiếp tuyến và dây cung) ⇔ \(\frac{S_{IAB}}{S_{ICA}}=\frac{AB^2}{AC^2}\)

Đồng thời ta có các tỉ số: \(\frac{IB}{IA}=\frac{IA}{IC}=\frac{AB}{CA}\)

Dễ thấy \(\frac{S_{IAB}}{S_{ICA}}=\frac{IB}{IC}\)

Vậy \(\frac{IB}{IC}=\frac{AB^2}{AC^2}\)

b) Dựa vào (1), ta suy ra: \(\frac{IC-24}{IA}=\frac{IA}{IC}=\frac{20}{28}=\frac{5}{7}\)

⇒ IA = 35 cm; IC = 49 cm; IB = 21 cm.

10 tháng 7 2020

Câu b tính như nào vậy bạn ơi, mình chưa hiểu lắm

30 tháng 10 2019

a, Chứng minh được: ∆BAI:∆ACI (g.g)

A B A C = I B I A ⇒ A B 2 A C 2 = I B 2 I A 2

Mặt khác: I A 2 = I B . I C => ĐPCM

b, Do ∆BAI:∆ACI (g.g)

=>  A I C I = B I A I

=>  I A I C = I C - 24 I A = 5 7

=> IA = 35cm

=> IC = 49cm

6 tháng 1 2019

bn tự kẻ hình nhé:

a) Xét  tgiac IAB và tgiac ICA có:

góc I:  chung

góc IAB = góc ICA  (chắn cung AB)

suy ra: tgiac IAB = tgiac ICA  (g.g)

=> IA/IC  =  IB/IA  =  AB/AC

=>  IA/IC . IB/IA = AB/AC . AB/AC

=> IB/IC = AB^2/AC^2   (đpcm)

b) Theo câu a) ta có:

IA/IC = IB/IA = AB/AC = 5/7 

Đặt:  IA = 5k  thì:  IC = 7k;   IB = 25/7 k

Ta có:  IC - IB = BC

=>  \(BC=7k-\frac{25}{7}k=\frac{24}{7}k\) 

=>   \(24=\frac{24}{7}k\)

=>  \(k=7\)

Vậy  IA = 5.7 = 35

        IC = 7.7 = 49

13 tháng 4 2020

100-89=?

NV
21 tháng 12 2020

\(\left\{{}\begin{matrix}\widehat{DCA}=\widehat{HCA}\\\widehat{DCA}+\widehat{DAC}=90^0\\\widehat{HCA}+\widehat{HBA}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{HBA}=\widehat{DAC}\)

\(\left\{{}\begin{matrix}\widehat{DAC}+\widehat{BAE}=90^0\\\widehat{HBA}+\widehat{HAB}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{BAE}=\widehat{HAB}\)

Có \(\left\{{}\begin{matrix}AH=AE=R\\\widehat{BAE}=\widehat{HAB}\\\text{AB chung}\end{matrix}\right.\)  \(\Rightarrow\Delta AHB=\Delta AEB\)

\(\Rightarrow\widehat{E}=\widehat{H}=90^0\Rightarrow BE\) là tiếp tuyến

21 tháng 12 2020

Cách chứng minh ^BAE=^HAB khó nghĩ thật ạ.

23 tháng 5 2019

a, Sử dụng tính chất phân giác trong và phân giác ngoài tại 1 điểm ta có:

I B K ^ = I C K ^ = 90 0

=> B, C, I, K ∈ đường tròn tâm O đường kính IK

b, Chứng minh  I C A ^ = O C K ^  từ đó chứng minh được  O C A ^ = 90 0

Vậy AC là tiếp tuyến của (O)

c, Áp dụng Pytago vào tam giác vuông HAC  => AH=16cm. Sử dụng hệ thức lượng trong tam giác vuông COA => OH=9cm,OC=15cm

1 tháng 4 2021

a)     CMR: 4 điểm B, I, C, K cùng thuộc (O).

Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên IC là phân giác trong của góc C.

Vì K là tâm đường tròn ngoại tiếp tam giác ABC của góc A nên  CK là phân giác ngoài của góc C.

Theo tính chất phân giác trong và phân giác ngoài ta có IC vuông CK nên ∠ICK=90

Chứng minh hoàn toàn tương tự ta có: ∠IBK=90

Xét tứ giác BICK ta có: ∠IBK+∠ICK=90+90=180

⇒BICK  là tứ giác nội tiếp (tứ giác có tổng hai góc đối diện bằng 180)

Do O là trung điểm của IK nên theo tính chất trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền thì OC = OI = OK.

Vậy O là tâm đường tròn ngoại tiếp tứ giác IBKC.

b)     CMR: AC là tiếp tuyến của (O).

Ta có : Tam giác IOC cân tại O nên : ∠OIC=∠OCI.

Mặt khác, theo tính chất góc ngoài của tam giác ta có :

∠OIC=∠IAC+∠ACI=1/2∠BAC+1/2∠ACB=1/2∠BAC+1/2∠ABC

⇒∠ICO+∠ICA=1/2∠BAC+1/2∠ABC+1/2∠ACB=12.180=90 ⇒OC⊥CA.

Do đó AC là tiếp tuyến của (O) tại C (đpcm).

c)     Tính tổng diện tích các hình viên phân giới hạn bởi các cung nhỏ CI, IB, BK, KC và các dây cung tương ứng của (O) biết AB = 20, BC = 24.

Gọi diện tích hình cần tính là S, diện tích hình tròn (O) là S’, gọi giao điểm BC và IK là M.

Ta có ngay :

S = S′−S (ICKB) =π.IO2−S (IBK)−S (IKC)

= π.IK2/4 −(BM.IK)/2−(CM.IK)/2

=πIK2/4 − (BC.IK)/2

Ta có :

     S (ABC) = 1/2 (AM.BC) = (AB+BC+CA) /2 .IM

⇔√(AB2−BM2 ) .24 = (AB+BC+CA).IM

⇔√[202−(24/2)2 ]. 24= (20.2+24).IM⇔IM=6.     

Áp dụng hệ thức lượng trong tam giác IBM vuông tại B  có đường cao BM ta có :

BM2=IM.MK ⇔MK=BM2/IM=122/6=24

⇒IM=IM+MK=6+24=30.

⇒S= 1/4(π.IK2)−1/2 BC.IK =1/4 π.30−1/2(24.30 )  =225π−360 ≈346,86  (dvdt)