\(\frac{R}{\sqrt{3}}\) ; AC =...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2019

a) Do tam giác ABC nội tiếp nên sẽ có 1 cạnh là đường kính (BC)

 Xét tam giác ABC có :\(AB^2+AC^2=\left(R\sqrt{2-\sqrt{3}}\right)^2+\left(R\sqrt{2+\sqrt{3}}\right)^2\)

                                                               \(=2R^2-R^2\sqrt{3}+2R^2+R^2\sqrt{3}\)

                                                                \(=4R^2\)

                                                                  \(=BC^2\)

( do BC là đường kính, BC=2R)

      Vậy tam giác ABC là tam giác vuông

17 tháng 11 2019

\(\sin B=\frac{AC}{BC}=\frac{R\sqrt{2+\sqrt{3}}}{2R}=\frac{\sqrt{2+\sqrt{3}}}{2}\)

suy ra góc B=75 độ

suy ra góc C=90 độ -75 độ =15 độ

12 tháng 8 2020

Ap dung cong thuc \(r=\frac{b+c-a}{2}\) (b=AC,c=AB , cai nay ban tu chung minh nhe)

ta co \(\frac{r}{a}=\frac{b+c-a}{2a}\le\frac{\sqrt{2\left(b^2+c^2\right)}-a}{2a}=\frac{\sqrt{2.a^2}-a}{2a}=\frac{a\sqrt{2}-a}{2a}=\frac{\sqrt{2}-1}{2}\)

Dau = xay ra khi b=c hay tam giac ABC vuong can tai A

22 tháng 9 2019

đề dư chỗ "gọi D, K là hình chiếu... AC" 

Có: \(\frac{AB.AC.BC}{4R}=\frac{1}{2}AH.BC\)\(\left(=S_{ABC}\right)\)

\(\Leftrightarrow\)\(\frac{AB.AC}{2R}=AH=\sqrt{2}R\)

\(\Leftrightarrow\)\(\frac{AB.AC}{2\sqrt{2}}=R^2\) ( là scp do R nguyên )