K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2019

a) Do tam giác ABC nội tiếp nên sẽ có 1 cạnh là đường kính (BC)

 Xét tam giác ABC có :\(AB^2+AC^2=\left(R\sqrt{2-\sqrt{3}}\right)^2+\left(R\sqrt{2+\sqrt{3}}\right)^2\)

                                                               \(=2R^2-R^2\sqrt{3}+2R^2+R^2\sqrt{3}\)

                                                                \(=4R^2\)

                                                                  \(=BC^2\)

( do BC là đường kính, BC=2R)

      Vậy tam giác ABC là tam giác vuông

17 tháng 11 2019

\(\sin B=\frac{AC}{BC}=\frac{R\sqrt{2+\sqrt{3}}}{2R}=\frac{\sqrt{2+\sqrt{3}}}{2}\)

suy ra góc B=75 độ

suy ra góc C=90 độ -75 độ =15 độ

AH
Akai Haruma
Giáo viên
7 tháng 9 2021

Lời giải:

Kẻ $OM, ON$ lần lượt vuông góc với $AB, AC$

Vì $OAB$ là tam giác cân tại $O$ ($OA=OB=R=3$) nên đường cao $OM$ đồng thời là đường trung tuyến 

$\Rightarrow M$ là trung điểm $AB$

Áp dụng định lý Pitago:

$MB=\sqrt{OB^2-OM^2}=\sqrt{3^2-(2\sqrt{2})^2}=1$ 

$\Rightarrow AB=2MB=2$ (cm)

Tương tự:

$N$ là trung điểm $AC$

$NC=\sqrt{OC^2-ON^2}=\sqrt{3^2-(\frac{\sqrt{11}}{2})^2}=2,5$ (cm)

$AC=2NC=2.2,5=5$ (cm)

AH
Akai Haruma
Giáo viên
7 tháng 9 2021

Hình vẽ: