K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2020

A B C I M K

a, Xét tam giác vuông MHC có :

\(\widehat{CMH}+\widehat{HCM}=90^o\)

Xét tam giác vuông ABC có:

\(\widehat{HIB}+\widehat{HCM}=90^o\)

\(\Rightarrow\widehat{CMH}=\widehat{HIB}\)

Xét 2 tam giác : KHM và IHB

MH = HB ( gt )

\(\widehat{CMN}=\widehat{HBI}\left(cmt\right)\)

\(\widehat{MKH}=\widehat{HIB}=90^o\)

\(\Rightarrow\Delta KHM=\Delta IHB\)

b, \(\Rightarrow HK=HI\)

Xét 2 tam giác : KHA và IHA

KM = IH ( cm a )

AN chung

\(\widehat{HKA}=\widehat{AIM}=90^o\)

\(\Rightarrow\Delta KHA=\Delta IHA\)

\(\Rightarrow\widehat{KAH}=\widehat{HAI}\)

Vậy : AH là tia phân giác góc BAC

22 tháng 4 2020

a, xet △ vuong mhc co  ∠cmh + ∠hcm = 90 do  xet △ vuong abc co  ∠hbi + ∠hcm = 90 do  suy ra ∠cmh = ∠hbi  xet △ BHI va △ MHK co  ∠CMH = ∠HBI [c/m tr]  HM = BH [gt]  ∠BIH = ∠MKH [=90 do]  ➩ △ BHI = △ MHK [ch-gn]  b, tu a co △bhi = △mhk ➩ ih = kh   xet △aih va △akh co  ah chung  ih = kh [c/m tr]  ∠aih = ∠akh [= 90 do]  ➩ △aih = △kah [ch-cgv]  ➩ ∠iah = ∠kah  ➩ ah la p/g cua ∠bac

a: Xét ΔABH vuông tại H và ΔKIH vuông tại H có

HA=HK

HB=HI

=>ΔABH=ΔKIH

b: ΔABH=ΔKIH

=>góc ABH=góc KIH

=>AB//IK

c: IK//AB

AB vuông góc AC

=>IK vuông góc AC

=>I,K,E thẳng hàng

d: Xét tứ giác ABKI có

H là trung điểm chung của AK và BI

AK vuông góc BI

=>ABKI là hình thoi

=>AB=AI=IK

=>IK=ID

=>góc IKD=góc IDK

16 tháng 3 2021

câu c có vẻ sai thông cảm

a: Xét ΔAHE vuông tại E và ΔAHI vuông tại I có

AH chung

\(\widehat{EAH}=\widehat{IAH}\)

Do đó: ΔAHE=ΔAHI

Xét ΔAHN có 

AE là đường cao

AE là đường trung tuyến

Do đó: ΔAHN cân tại A

b: Ta có: HN=2HE

HM=2HI

mà HE=HI

nên HN=HM

Xét ΔAHM có 

AI là đường cao

AI là đường trung tuyến

DO đó: ΔAHM cân tại A

=>AH=AM=AN

Ta có: AM=AN

HM=HN

Do đó: AH là đường trung trực của MN

12 tháng 5 2022

còn câu c bạn 

2 tháng 5 2019

A B C H I D K E

#)Giải :

a)Xét \(\Delta AID\)và  \(\Delta AIH\)có :

         ID = IH ( I là trung điểm của DH )

         IA là cạnh chung 

 =>   \(\Delta AID=\Delta AIH\) ( cạnh góc vuông - cạnh góc vuông )

2 tháng 5 2019

Hình vẽ:

a: Xét ΔHMI vuông tại M và ΔHNK vuông tại N có

HI=HK

\(\widehat{MHI}\) chung

Do đó: ΔHMI=ΔHNK

b: Xét ΔHCB có

HN là đường cao

HN là đường trung tuyến

Do đó: ΔHCB cân tại H

=>HB=HC

Xét ΔHCA có

HM là đường cao

HM là đường trung tuyến

Do đó: ΔHCA cân tại H

=>HC=HA

c: Ta có: HC=HA

HC=HB

Do đó: HA=HB

=>ΔHAB cân tại H

23 tháng 3 2020

a) Xét \(\Delta BAI\)và \(\Delta BAC\)có :

AB : cạnh chung

\(\widehat{BAI}=\widehat{BAC}\left(=90^0\right)\)

AC = AI ( gt )

\(\Rightarrow\Delta BAI=\Delta BAC\left(c-g-c\right)\)

\(\Rightarrow\widehat{ABI}=\widehat{ABC}\)( do 2 tam giác = nhau )

Mà \(\widehat{ABI}+\widehat{BAH}=90^0\)( tổng 3 góc = 1800 mà có 1 góc = 900 ( do AH\(\perp\)BI ) nên tổng 2 góc còn lại = 900 )

\(\Rightarrow\widehat{ABC}+\widehat{BAK}=90^0\)

\(\Rightarrow\widehat{BAH}=\widehat{BAK}\)

=> BA là đường phân giác của \(\widehat{HBK}\)

b) Ta có tam giác vuông ABK = CBA ( ch-gn ) => AB2 = BK . BC (1)

Ta có tam giác vuông ABH = IBA ( ch-gn ) => AB2 = BH . BI (2)

Từ (1) và (2) => BK . BC = BH . BI => HK // IC ( theo định lí Ta-let )

c) Gọi E là giao điểm của HK và BA

Có tam giác BHK cân ( BE là đường cao, phân giác ) => BH = BK

Ta có BA là đường trung trực của HK => HA = KA

Có tam giác vuông BHN = BKM ( gn-cgv ) => HN = KM

=> HA + AN = AK + AM => AN = AM => Tam giác AMN cân tại A

15 tháng 12 2022

Xét ΔAHD có

AI vừa là đường cao, vừa là trung tuyến

nên ΔAHD cân tại A

mà AB là đường cao

nên AB là phân giác của góc HAD

Xet ΔAHB và ΔADB có

AH=AD
góc HAB=góc DAB

AB chung

Do đó ΔAHB=ΔADB

=>góc ADB=90 độ

=>AD vuông góc với BD

15 tháng 12 2022

nhưng bạn ơi,mình cần chứng minh chúng // cơ