Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với S1 = SABC và S2 = SABH . Ta có các công thức tính diện tích:
\(S_1=\frac{CK.AB}{2};\) \(S_2=\frac{HK.AB}{2}\)
\(\Rightarrow S_1.S_2=\frac{AB^2.\left(CK.HK\right)}{4}\Rightarrow\sqrt{S_1.S_2}=\frac{AB.\sqrt{CK.HK}}{2}\)(*)
Dễ thấy: ^KBH = ^KCA (Do cùng phụ với ^BAC) => \(\Delta\)HKB ~ \(\Delta\)AKC (g.g)
\(\Rightarrow\frac{HK}{AK}=\frac{BK}{CK}\Rightarrow CK.HK=AK.BK\)
Lại có: \(\Delta\)AMB vuông ở M có đường cao MK \(\Rightarrow AK.BK=MK^2\)(Hệ thức lg trg \(\Delta\)vuông)
Từ đó => \(CK.HK=MK^2\Leftrightarrow\sqrt{CK.HK}=MK\); thế vào (*) thì được:
\(\sqrt{S_1.S_2}=\frac{AB.MK}{2}=S_{AMB}=S\). Vậy có ĐPCM.
bạn ktra lại đề nhé
đáng nhẽ là: \(S=\sqrt{S_1.S_2}\) chứ
đúng thế thì vào câu hỏi tương tự có nhé
đây link đó: https://olm.vn/hoi-dap/detail/188057031061.html
Chúc bạn hok tốt!!!
Em viết đề bài ẩu quá, nên nhìn nhiều người chẳng muốn giúp em là phải.
Đầu tiên ta thấy \(\Delta KAH\sim\Delta KCB\) (g.g.) suy ra \(\frac{KA}{KC}=\frac{KH}{KB}\to KH\cdot KC=KA\cdot KB.\)
Xét tam giác vuông \(KAB\), theo hệ thức liên hệ giữa đường cao và hình chiếu, \(KM^2=KA\cdot KB.\)
Từ hai điều trên ta suy ra \(KM^2=KH\cdot KC.\) Nhân cả hai vế của đẳng thức này với \(\frac{AB^2}{4}\), ta suy ra
\(\frac{KM^2\cdot AB^2}{4}=\frac{KH\cdot AB}{2}\times\frac{KC\cdot AB}{2}\Leftrightarrow S_{AMB}^2=S_{AHB}\times S_{ABC}\Leftrightarrow S_{AMB}=\sqrt{S_{AHB}\cdot S_{ABC}}.\) (ĐPCM)
h