K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ∆ vuông BKC ta có : 

BM = MC 

=> KM = \(\frac{1}{2}\)BC 

=> KM = BM = MC (1) ( Tính chất ∆ vuông )

Xét ∆ vuông CIB ta có : 

BM = MC 

=> IM = \(\frac{1}{2}\)BC 

=> IM = BM = CM (2) 

Từ (1) và (2) ta có : 

MB = MK = MI = MC 

=> KM = MI 

=> ∆KIM cân tại M

20 tháng 7 2019

Hình vn tự vẽ hen :)

Cmr: Tam giác ABC có góc nhọc BI ta nối góc BI vào CK

Vẽ một hình tam giác với điểm là A góc là H ta có hình tam giác AH

Vậy suy ra:

=> Ta có 2 hình tam giác vuông của 1 hình ABC (Tam giác nhỏ)

(1) AHB (2)BID ta có:

BD=AB (gt)

=> K là một trung điểm ta đặt hai trung điểm có:

KIB=KCB (trung điểm góc) (đcmlg)

Tam giác AHB = ACD ( cạnh huyền của tam giác ABC)

Xét hai góc KIB và KCB ( Cùng phụ góc hai ) Mik đã đánh giấu

Nên ta còn:AC=AB

Qua chứng minh trên ta rút ra kết luận

(BC + HC +IB + KCB =EK (đpcm)

~Study well~ :)

20 tháng 7 2019

góc mà là BI, BI là cạnh mà , tam giác mà là AH 

a: Xét ΔHKB vuông tại K và ΔHDC vuông tại D có

góc KHB=góc DHC

=>ΔKHB đồng dạng với ΔDHC

Xet ΔCDB vuông tại D và ΔCEA vuông tại E có

góc C chung

=>ΔCDB đồng dạng với ΔCEA

=>CD/CE=CB/CA

=>CD*CA=CE*CB

b: góc BKC=góc BDC=90 độ

=>BKDC nội tiếp

=>góc SBK=góc SDC

Bài 1:

a: Ta có: ΔBKC vuông tại K

mà KM là đường trung tuyến

nên KM=BC/2(1)

Ta có: ΔBHC vuông tại H

mà HM là đường trung tuyến

nên HM=BC/2(2)

Từ (1)và (2) suy ra MH=MK

hay ΔMHK cân tại M

b: Kẻ MN vuông góc với HK

=>N là trung điểm của HK

Xét hình thang CBDE có

M là trung điểm của BC

MN//DB//EC

DO đó: N là trung điểm của DE

=>DK=HE

15 tháng 11 2021

a: Xét tứ giác BHCK có 

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

15 tháng 11 2021

b) Ta có: Tứ giác BHCK là hình bình hành.

=> HC//BK mà H thuộc FC (gt)

=> FC//BK(1)

FC vuông góc với AB(gt)(2)

Từ (1)(2) suy ra AB vuông góc với  BK

Tương tự:

Có: tứ giác BHCK là hbh(cmt)

=> BH//KC mà H thuộc EB(gt)

=> BE// KC mà BE vuông góc với AC=> KC vuông góc với  AC

a) Xét ΔHEA vuông tại E và ΔHDB vuông tại D có 

\(\widehat{AHE}=\widehat{BHD}\)(hai góc đối đỉnh)

Do đó: ΔHEA\(\sim\)ΔHDB(g-g)

23 tháng 3 2021

giúp mik câu c với