K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2020

bạn tham khảo câu hỏi này : https://olm.vn/hoi-dap/detail/216062676408.html

nếu không hiện link mình sẽ gửi qua tin nhắn nhé

28 tháng 6 2021

a)Xét ADB và tam giác AEC ta có:

`hat{AEC}=hat{ADB}=90^o`(gt)

`hat{A}` chung

`=>Delta ADB~Delta AEC(gg)`

b)Vì `Delta ADB~Delta AEC(gg)`

`=>(AB)/(AC)=(AE)/(AD)`

`=>DeltaADE~Delta ABC(cgc)`

c)

a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có

\(\widehat{A}\) chung

Do đó: ΔADB∼ΔAEC(g-g)

b) Ta có: ΔADB∼ΔAEC(cmt)

nên \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)

hay \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Xét ΔADE và ΔABC có

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)

\(\widehat{A}\) chung

Do đó: ΔADE∼ΔABC(c-g-c)

a: Xét tứ giác BEDC có

góc BEC=góc BDC=90 độ

=>BEDC là tứ giác nội tiếp

=>góc AED=góc ACB

mà góc A chung

nên ΔAED đồng dạng với ΔABC

b: góc xAC=góc ABC

góc ABC=góc ADE

=>góc xAC=góc ADE

=>Ax//DE

Xét ΔABD vuông tại D có \(\cos BAD=\dfrac{AD}{AB}\)(1)

Xet ΔACE vuông tại E có \(\cos CAE=\dfrac{AE}{AC}\left(2\right)\)

Từ (1) và (2) suy ra AD/AB=AE/AC

Xét ΔADE và ΔABC có 
AD/AB=AE/AC

góc DAE chung

DO đó: ΔADE\(\sim\)ΔABC

27 tháng 9 2017

A B C E D

Xét tam giác BAD, ta có:

CosA= \(\dfrac{AD}{AB}\) (1)

Xét tam giác CAE, ta có:

CosA= \(\dfrac{AE}{AC}\) (2)

Từ (1) và (2) suy ra:

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\) (3)

Ta lại có: góc A : góc chung (4)

Từ (3) và (4) suy ra:

Tam giác ADE ∽ tam giác ABC


Câu 1: 

Xét ΔABD vuông tạiD và ΔACE vuông tại E có

góc A chung

Do đó: ΔABD đồng dạng với ΔACE

Suy ra: AD/AE=AB/AC

hay AD/AB=AE/AC

Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc A chung

Do đó: ΔADE đồg dạng với ΔABC

27 tháng 10 2023

a: Xét ΔABH vuông tại H có HD là đường cao

nên \(BD\cdot BA=BH^2\)

=>\(BA\cdot3,6=6^2=36\)

=>BA=10(cm)

AD+DB=BA

=>AD+3,6=10

=>AD=6,4(cm)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA=\sqrt{10^2-6^2}=8\left(cm\right)\)

Xét ΔAHB vuông tại H có HD là đường cao

nên \(HD\cdot AB=HA\cdot HB\)

=>\(HD\cdot10=6\cdot8=48\)

=>HD=4,8(cm)

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

=>\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét ΔADE và ΔACB có

AD/AC=AE/AB

\(\widehat{DAE}\) chung

Do đó: ΔADE đồng dạng với ΔACB