K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

\(\text{a) Xét tứ giác BEFC có:}\)

\(\text{∠BEC = 90 o (CE là đường cao)}\)

\(\text{∠BFC = 90 ^0 (BF là đường cao)}\)

=> 2 đỉnh E, F cùng nhìn cạnh BC dưới 1 góc vuông

=> Tứ giác BEFC là tứ giác nội tiếp

\(\text{Xét tứ giác AEHF có:}\)

\(\text{∠AEH = 90 o (CE là đường cao)}\)

\(\text{∠AFH = 90 o (BF là đường cao)}\)

=> ∠AEH + ∠AFH = 180^ o

=> Tứ giác AEHF là tứ giác nội tiếp.

\(\text{b) Xét ΔSBE và ΔSFC có:}\)

\(\text{∠FSC là góc chung}\)

\(\text{∠SEB = ∠SCF (Tứ giác BEFC là tứ giác nội tiếp)}\)

=> ΔSBE ∼ ΔSFC (g.g)

\(\Rightarrow\frac{SB}{SF}\)=\(\frac{SE}{SC}\)\(\Rightarrow\text{SE.SF = SB.SC (1)}\)

\(\text{Xét ΔSMC và ΔSNB có:}\)

\(\text{∠ NSC là góc chung}\)

\(\text{∠ SCM = ∠SNB (Hai góc nội tiếp cùng chắn cung MB)}\)

=> ΔSMC ∼ ΔSBN (g.g)

\(\Rightarrow\frac{SM}{SB}\)=\(\frac{SC}{SN}\Rightarrow\text{SM.SN = SB.SC (2)}\)

Từ (1) và (2) => SE.SF = SM.SN

\(\text{c) Ta có:}\)

\(\hept{\begin{cases}\widehat{KAE}=\widehat{KCB}\left(\text{2 GÓC NỘI TIẾP CÙNG CHẮN CUNG KB}\right)\\\widehat{HAE}=\widehat{BFM}\left(\text{TỨ GIÁC AEHF LÀ TỨ GIÁC NỘI TIẾP}\right)\\\widehat{KCB}=\widehat{BFM}\left(\text{TỨ GIÁC BEFC LÀ TỨ GIÁC NỘI TIẾP}\right)\end{cases}}\)

=> ∠KAE = ∠HAE

=> AE là tia phân giác của góc ∠KAH

\(\text{Mà AE cũng là đường cao của tam giác KAH}\)

=> ΔKAH cân tại A

=> AE là đường trung tuyến của ΔKAH

=> E là trung điểm của KH hay K và H đối xứng nhau qua AB

\(\text{d) Tia BF cắt đường tròn (O) tại J}\)

∠KJB = ∠KCB (2 góc nội tiếp cùng chắn cung KB)

∠KCB = ∠EFH (tứ giác BEFC là tứ giác nội tiếp )

=> ∠KJB = ∠EFH

Mà 2 góc này ở vị trí so le trong

=> KJ // EF

KI // EF (gt)

=> I ≡ J

=> H, F, J thẳng hàng

HÌNH THÌ VÀO XEM THỐNG KÊ HỎI ĐÁP NHA

BÀI LÀM ĐÚNG MÀ SAO CÓ NGƯỜI K SAI TÔI ĐẢM BẢO BÀI NÀY ĐÚNG 100%

18 tháng 2 2018

2) Theo 1). dễ thấy Δ B F A ∽ Δ B N P ⇒ Δ B N F ∽ Δ B P A ⇒ B N B P = F N A P (1).

Tương tự Δ C M E ∽ Δ C P A ⇒ C M C P = E M A P  (2).

Từ (1) và (2), ta có B N C M ⋅ C P B P = F N E M và theo giả thiết F N E M = B N C M , suy ra   C P = B P ⇒ A D là phân giác góc B A C ^ .

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

\(\text{a) Ta có:}\)

∠BFC = 90o (góc nội tiếp chắn nửa đường tròn)=> ∠AFC = 90o

∠BEC = 90o (góc nội tiếp chắn nửa đường tròn)=> ∠AEC = 90o

Tứ giác AEHF có:

∠AFC = 90o

∠AEC = 90o

=>∠AFC + ∠AEC = 180o

=> AEHF là tứ giác nội tiếp

b) ∠AFH = 90o => AH là đường kính đường tròn ngoại tiếp tứ giác AEHF

\(\text{Do đó trung điểm I của AH là tâm đường tròn ngoại tiếp tứ giác AEHF}\)

=> Bán kính đường tròn ngoại tiếp tứ giác AEHF là R = AI = \(\frac{AH}{2}\) = 2cm

Ta có: ∠BAC = 60o

=> ∠FIE = 2∠BAC = 120o (Góc nội tiếp bằng \(\frac{1}{2}\) góc ở tâm cùng chắn một cung)

=> Số đo ∠EHF = 120o

Diện tích hình quạt IEHF là:

\(S=\frac{\pi R^2N}{360}=\frac{\pi.2^2.120}{360}=\frac{4\pi}{3}\left(ĐVDT\right)\)

\(\text{c) Xét tam giác ABC có: }\)

BE và CF là các đường cao

BE giao với CF tại H

=> H là trực tâm tam giác ABC

=>AH ⊥ BC hay ∠ADC = ∠ADB = 90o

Xét tứ giác BEFC có:

∠BFC = ∠BEC = 90o

=> 2 đỉnh E, F cùng nhìn cạnh BC dưới 1 góc bằng nhau

=> BEFC là tứ giác nội tiếp

=> ∠HFE = ∠BEC ( 2 góc nội tiếp cùng chắn cung EC) (1)

Xét tứ giác BFHD có:

∠BFH = ∠HDB = 90o

=>∠BFH + ∠HDB = 180o

=> Tứ giác BFHD là tứ giác nội tiếp ( tổng 2 góc đối bằng 180o)

=> ∠DFH = ∠BEC ( 2 góc nội tiếp cùng chắn cung HD) (2)

Từ (1) và (2) = > ∠HFE = ∠DFH

=> FH tia phân giác của góc ∠DFE

d) Tam giác OFB cân tại O => ∠OFB = ∠FBO

Tam giác BFC vuông tại F => ∠FBO + ∠HCD = 90o

=> ∠OFB + ∠HCD = 90o (*)

\(\hept{\begin{cases}\Delta FIH\text{CÂN TẠI I}\\\widehat{IHF}=\widehat{DHC}\left(\text{ĐỐI ĐỈNH}\right)\\\Delta HDC\text{VUÔNG TẠI D}\Rightarrow\widehat{DHC}+\widehat{HDC}=90^0\end{cases}}\Rightarrow\widehat{IFH}+\widehat{HDC}=90^0\)

Từ (*) và (**) => ∠OFB = ∠IFH

=> ∠OFB + ∠OFH = ∠IFH + ∠OFH <=> ∠BFC = ∠FIO <=> ∠FIO) = 90o

Vậy FI là tiếp tuyến của (O)

Chứng minh tương tự EI là tiếp tuyến của (O)

Mà I là trung điểm của AH

=> Tiếp tuyến của (O) tại E và F và AH đồng quy tại 1 điểm.

HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP CỦA MIK NHA

VCN JACK trả lời cuc64 kì đ luôn . đ là chất 

8 tháng 3 2019

1). Gọi DE cắt (O) tại P khác D. Do AD là đường kính của (O), suy ra A P D ^ = 90 0 , mà A H E ^ = 90 0 ( do  H E ∥ B C ⊥ H A  ), nên tứ giác APEH nội tiếp.

Ta có A P H ^ = A E H ^  (góc nội tiếp)

= A C B ^ H E ∥ B C = A P B ^ (góc nội tiếp)

⇒ P H ≡ P B

2). Ta có H P ⊥ A C ⇒ A E H ^ = A H P ^ = A E P ^  

Suy ra EA là phân giác ngoài đỉnh E của tam giác DEF

Tương tự FA là phân giác ngoài đỉnh F của tam giác DEF

Suy ra A là tâm đường tròn bàng tiếp ứng với đỉnh D của tam giác DEF

3). Do I là tâm nội tiếp nên EI là tia phân giác trong.

Mà EA là tia phân giác ngoài, suy ra  E I ⊥ A C ⇒ E I ∥ H B

Tương tự F I ∥ H C ;   E F ∥ B C ⇒ Δ I E F   v à   Δ H B C có cạnh tương ứng song song, nên BE; CF và IH đồng quy.

1 tháng 11 2017

1). Gọi AD cắt (O) tại P khác A

Ta có P C M ^ = P A C ^  (góc tạo bởi tiếp tuyến và dây cung)  = P E M ^ (góc đồng vị do E M ∥ A C );

Suy ra tứ giác ECMP nội tiếp. Từ đó suy ra   M P C ^ = M E C ^ = E C A ^ = C A P ^ ⇒ PM  tiếp xúc (O)

Tương tự PN tiếp xúc (O), suy ra MN tiếp xúc (O) tại P.

16 tháng 9 2021

\(\widehat{BKC}=\widehat{BHC}\left(=90^0\right)\) nên HKBC nội tiếp đường tròn