K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2022

lx

15 tháng 3 2022

lỗi 

a: Xét tứ giác AEHD có

\(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)

=>AEHD là tứ giác nội tiếp

Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

b: Xét (O) có

\(\widehat{D'E'C}\) là góc nội tiếp chắn cung D'C

\(\widehat{D'BC}\) là góc nội tiếp chắn cung D'C

Do đó: \(\widehat{D'E'C}=\widehat{D'BC}\left(1\right)\)

Ta có: BEDC là tứ giác nội tiếp

=>\(\widehat{DEC}=\widehat{DBC}\)

=>\(\widehat{HED}=\widehat{D'BC}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{HED}=\widehat{HE'D'}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên DE//D'E'

Kẻ tiếp tuyến Ax của (O')

=>Ax\(\perp\)OA tại A

Xét (O) có

\(\widehat{xAB}\) là góc tạo bởi tiếp tuyến Ax và dây cung AB

\(\widehat{ACB}\) là góc nội tiếp chắn cung AB

Do đó: \(\widehat{xAB}=\widehat{ACB}\)

mà \(\widehat{ACB}=\widehat{AED}\left(=180^0-\widehat{BED}\right)\)

nên \(\widehat{xAB}=\widehat{AED}\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ax//ED

Ta có: Ax//ED

OA\(\perp\)Ax

Do đó: OA\(\perp\)ED

c: Xét (O) có

ΔABA' nội tiếp

A'A là đường kính

Do đó: ΔABA' vuông tại B

=>AB\(\perp\)BA'

Xét (O) có

ΔACA' nội tiếp

A'A là đường kính

Do đó: ΔACA' vuông tại C

=>AC\(\perp\)CA'

Ta có: AC\(\perp\)CA'

BH\(\perp\)AC

Do đó:  BH//A'C

Ta có: AB\(\perp\)BA'

CH\(\perp\)AB

Do đó: CH//BA'

Xét tứ giác BHCA' có

BH//CA'

BA'//CH

Do đó: BHCA' là hình bình hành

=>BC cắt HA' tại trung điểm của mỗi đường

mà I là trung điểm của BC

nên I là trung điểm của HA'

=>H,I,A' thẳng hàng

21 tháng 4 2020

ta có 

\(\widehat{AEH}=90^0;\widehat{AFH}=90^0\)

=> \(\widehat{AEH}+\widehat{AFH}=180^0\)

=> tứ giác AEHF nội tiếp được nhé

ta lại có AEB=ADB=90 độ

=> E , D cùng nhìn cạnh AB dưới 1 góc zuông

=> tứ giác AEDB nội tiếp được nha

b)ta có góc ACK = 90 độ ( góc nội tiếp chắn nửa đường tròn)

hai tam giác zuông ADB zà ACK có

ABD = AKC ( góc nội tiếp chắn cung AC )

=> tam giác ABD ~ tam giác AKC (g.g)

c) zẽ tiếp tuyến xy tại C của (O)

ta có OC \(\perp\) Cx (1)

=> góc ABC = góc DEC

mà góc ABC = góc ACx

nên góc ACx= góc DEC

do đó Cx//DE       ( 2)

từ 1 zà 2 suy ra \(OC\perp DE\)

1.

Chứng minh được \widehat{CEB} = \widehat{BDC} = 90^{\circ}.

Suy ra 4 điểm B,E, D, C cùng thuộc đường tròn đường kính CB nên tứ giác BCDE nội tiếp.

Có tứ giác BCDE nội tiếp nên \widehat{DCE} = \widehat{DBE} (2 góc nội tiếp cùng chắn cung DE) hay \widehat{ACQ} = \widehat{ABP}.

Trong đường tròn tâm (O), ta có \widehat{ACQ} là góc nội tiếp chắn cung AQ và \widehat{ABP} nội tiếp chắn cung AP

\Rightarrow \overset{\frown}{AQ}=\overset{\frown}{AP}.

2.

(O) có \overset{\frown}{AQ}=\overset{\frown}{AP} nên \widehat{ABP} = \widehat{ABQ} hay \widehat{HBE} = \widehat{QBE}.

Ta chứng minh được BE vừa là đường cao, vừa là phân giác của tam giác HBQ nên E là trung điểm của HQ.

Chứng minh tương tự D là trung điểm của HP \Rightarrow DE là đường trung bình của tam giác HPQ \Rightarrow DE // PQ (1).

Do \overset{\frown}{AQ}=\overset{\frown}{AP} nên A là điểm chính giữa cung PQ \Rightarrow OA \perp PQ (2).

Từ (1) và (2) suy ra OA \perp DE.

3.

Kẻ đường kính CF của đường tròn tâm (O), chứng minh tứ giác ADHE nội tiếp đường tròn đường kính AH.

Chứng minh tứ giác AFBH là hình bình hành, suy ra BF=AH.

Trong đường tròn (O) có \widehat{CAB} = \widehat{CFB} = 60^{\circ} (2 góc nội tiếp cùng chắn cung BC). Chỉ ra tam giác BCF vuông tại B và áp dụng hệ thức giữa cạnh và góc ta được BF=CF. \cos 60^{\circ} =R=6 cm.

Đường tròn ngoại tiếp tứ giác ADHE cũng là đường tròn ngoại tiếp tam giác ADE.

Gọi r là bán kính đường tròn ngoại tiếp tam giác ADE.

Suy ra 2r=AH=BF=6 cm.

Vậy r=3 cm.

20 tháng 4 2020

Bài 1 : 

Nửa chu vi hình chữ nhật là: 50:2=25 (m)

Gọi chiều rộng là x (0<x<12,5)

=> chiều dài là: 25 -x (m)

Diện tích là: x (25-x)

Ta có phương trình: 

\(x\left(25-x\right)=144\)

\(\Rightarrow-x^2+25x=144\)

\(\Rightarrow x^2-25x+144=0\)

\(\Rightarrow x^2-9x-16x+144=0\)

\(\Rightarrow\left(x-9\right)\left(x-16\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\)

Vậy chiều rộng là 9m và chiều dài là 25-9=16m