K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.

Chứng minh được \widehat{CEB} = \widehat{BDC} = 90^{\circ}.

Suy ra 4 điểm B,E, D, C cùng thuộc đường tròn đường kính CB nên tứ giác BCDE nội tiếp.

Có tứ giác BCDE nội tiếp nên \widehat{DCE} = \widehat{DBE} (2 góc nội tiếp cùng chắn cung DE) hay \widehat{ACQ} = \widehat{ABP}.

Trong đường tròn tâm (O), ta có \widehat{ACQ} là góc nội tiếp chắn cung AQ và \widehat{ABP} nội tiếp chắn cung AP

\Rightarrow \overset{\frown}{AQ}=\overset{\frown}{AP}.

2.

(O) có \overset{\frown}{AQ}=\overset{\frown}{AP} nên \widehat{ABP} = \widehat{ABQ} hay \widehat{HBE} = \widehat{QBE}.

Ta chứng minh được BE vừa là đường cao, vừa là phân giác của tam giác HBQ nên E là trung điểm của HQ.

Chứng minh tương tự D là trung điểm của HP \Rightarrow DE là đường trung bình của tam giác HPQ \Rightarrow DE // PQ (1).

Do \overset{\frown}{AQ}=\overset{\frown}{AP} nên A là điểm chính giữa cung PQ \Rightarrow OA \perp PQ (2).

Từ (1) và (2) suy ra OA \perp DE.

3.

Kẻ đường kính CF của đường tròn tâm (O), chứng minh tứ giác ADHE nội tiếp đường tròn đường kính AH.

Chứng minh tứ giác AFBH là hình bình hành, suy ra BF=AH.

Trong đường tròn (O) có \widehat{CAB} = \widehat{CFB} = 60^{\circ} (2 góc nội tiếp cùng chắn cung BC). Chỉ ra tam giác BCF vuông tại B và áp dụng hệ thức giữa cạnh và góc ta được BF=CF. \cos 60^{\circ} =R=6 cm.

Đường tròn ngoại tiếp tứ giác ADHE cũng là đường tròn ngoại tiếp tam giác ADE.

Gọi r là bán kính đường tròn ngoại tiếp tam giác ADE.

Suy ra 2r=AH=BF=6 cm.

Vậy r=3 cm.

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.a) Chứng minh tứ giác AEHF là hình chữ nhậtb) Chứng minh tứ giác BEFC nội tiếpc) Gọi I là trung điểm của BC.Chứng minh AI vuông góc với EFd) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEFC.Tính diện tích hình tròn tâm K.B2: Cho ABC nhọn, đường tròn (O)...
Đọc tiếp

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.

a) Chứng minh tứ giác AEHF là hình chữ nhật

b) Chứng minh tứ giác BEFC nội tiếp

c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF

d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.

B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H

a) Chứng minh tứ giác ADHE nội tiếp

b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE

c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF

d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC

B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )

a) Chứng minh tứ giác OBAC nội tiếp

b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD

c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA

d) Tính diện tích tam giác BDC theo R

B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H

a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó

b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC

c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF

d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R

B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.

a) Chứng minh tứ giác AKHF nội tiếp đường tròn.

b) Chứng minh hai cung CI và CJ bằng nhau.

c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau

B6: Cho tam giác ABC nhọn nội tiếp đường tròn  ( O; R ),các đường cao BE, CF  .

a)Chứng minh tứ giác BFEC nội tiếp.

b)Chứng minh OA  vuông góc với EF.

3
27 tháng 5 2018

B1, a, Xét tứ giác AEHF có: góc AFH = 90o  ( góc nội tiếp chắn nửa đường tròn)

                                             góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )

                                             Góc CAB = 90o ( tam giác ABC vuông tại A)

=> tứ giác AEHF là hcn(đpcm)

b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF  = góc AHF ( hia góc nội tiếp cùng chắn cung AF)

mà góc AHF = góc ACB ( cùng phụ với góc FHC)

=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)

c,gọi M là giao điểm của AI và EF

ta có:góc AEF = góc ACB (c.m.t) (1)

do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA

hay tam giác IAB cân tại I => góc MAE = góc ABC (2)

mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong  một tam giác)

=>  ACB + góc ABC = 90o (3)

từ (1) (2) và (3) => góc AEF + góc MAE = 90o

=> góc AME = 90o (theo tổng 3 góc trong một tam giác)

hay AI uông góc với EF (đpcm)

1 tháng 4 2019

em moi lop 6 huhuhuhuhuhu

27 tháng 5 2022

Xin lỗi bạn nhưng máy mình bị lỗi không vẽ hình được.

c) Tứ giác BEDC là tứ giác nội tiếp (câu a) \(\Rightarrow\widehat{BDE}=\widehat{BCE}\) hay \(\Rightarrow\widehat{BDE}=\widehat{BCQ}\) (1)

Xét (O) có \(\widehat{BCQ}\) và \(\widehat{BPQ}\) là các góc nội tiếp chắn \(\stackrel\frown{BQ}\) \(\Rightarrow\widehat{BCQ}=\widehat{BPQ}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{BDE}=\widehat{BPQ}\left(=\widehat{BCQ}\right)\)

\(\Rightarrow DE//PQ\) (2 góc đồng vị bằng nhau)

d) Kẻ tia tiếp tuyến Ax của (O) (ở đây mình lấy về phía B chứ còn bạn lấy tia tiếp tuyến này vế phía B hay phía C tùy) 

Dễ thấy \(\widehat{BAx}\) và \(\widehat{ACB}\) lần lượt là góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn \(\stackrel\frown{AB}\) \(\Rightarrow\widehat{BAx}=\widehat{ACB}\)

Tứ giác BEDC nội tiếp \(\Rightarrow\widehat{AED}=\widehat{ACB}\) (góc ngoài = góc trong đối)

\(\Rightarrow\widehat{BAx}=\widehat{AED}\left(=\widehat{ACB}\right)\) \(\Rightarrow Ax//DE\) ( 2 góc so le trong bằng nhau)

Vì \(DE//PQ\left(cmt\right)\) \(\Rightarrow Ax//PQ\)\(\left(//DE\right)\)

Mà \(Ax\perp OA\) tại A (do Ax là tiếp tuyến tại A của (O)) \(\Rightarrow OA\perp PQ\) (3)

Xét (O) có OA là 1 phần đường kính và \(OA\perp PQ\left(cmt\right)\) 

\(\Rightarrow\) OA đi qua trung điểm của PQ  (4)

Từ (3) và (4) \(\Rightarrow\) OA là trung trực của đoạn PQ

a: Xét tứ giác AEHD có

\(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)

=>AEHD là tứ giác nội tiếp

Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

b: Xét (O) có

\(\widehat{D'E'C}\) là góc nội tiếp chắn cung D'C

\(\widehat{D'BC}\) là góc nội tiếp chắn cung D'C

Do đó: \(\widehat{D'E'C}=\widehat{D'BC}\left(1\right)\)

Ta có: BEDC là tứ giác nội tiếp

=>\(\widehat{DEC}=\widehat{DBC}\)

=>\(\widehat{HED}=\widehat{D'BC}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{HED}=\widehat{HE'D'}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên DE//D'E'

Kẻ tiếp tuyến Ax của (O')

=>Ax\(\perp\)OA tại A

Xét (O) có

\(\widehat{xAB}\) là góc tạo bởi tiếp tuyến Ax và dây cung AB

\(\widehat{ACB}\) là góc nội tiếp chắn cung AB

Do đó: \(\widehat{xAB}=\widehat{ACB}\)

mà \(\widehat{ACB}=\widehat{AED}\left(=180^0-\widehat{BED}\right)\)

nên \(\widehat{xAB}=\widehat{AED}\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ax//ED

Ta có: Ax//ED

OA\(\perp\)Ax

Do đó: OA\(\perp\)ED

c: Xét (O) có

ΔABA' nội tiếp

A'A là đường kính

Do đó: ΔABA' vuông tại B

=>AB\(\perp\)BA'

Xét (O) có

ΔACA' nội tiếp

A'A là đường kính

Do đó: ΔACA' vuông tại C

=>AC\(\perp\)CA'

Ta có: AC\(\perp\)CA'

BH\(\perp\)AC

Do đó:  BH//A'C

Ta có: AB\(\perp\)BA'

CH\(\perp\)AB

Do đó: CH//BA'

Xét tứ giác BHCA' có

BH//CA'

BA'//CH

Do đó: BHCA' là hình bình hành

=>BC cắt HA' tại trung điểm của mỗi đường

mà I là trung điểm của BC

nên I là trung điểm của HA'

=>H,I,A' thẳng hàng

a: Xét tứ giác BEDC có

góc BEC=góc BDC=90 độ

=>BEDC là tứ giác nội tiêp

b: góc ABM=góc ACN

=>sđ cung AM=sđ cung AN=2*30=60 độ

=>AM=AN

c: OM=ON

AM=AN

=>OA là trung trực của MN

=>OA vuông góc MN

d: Kẻ đường kính AD

Xét ΔACD vuông tại C và ΔAKB vuông tại K có

góc ADC=góc ABK

=>ΔACD đồng dạng với ΔAKB

=>AC/AK=AD/AB

=>AK*2*R=AB*AC

a: góc BEC=1/2*180=90 độ

góc BDC=1/2*180=90 độ

góc AEH+góc ADH=180độ

=>AEHD nội tiếp

b: Xet ΔABC có BD,CE là đường cao

BD cắt CE tại H

=>H là trực tâm

=>AH vuông góc BC

Xét ΔSBE và ΔSDC co

góc SBE=góc SDC

góc S chung

=>ΔSBE đồng dạngvơi ΔSDC

=>SB/SD=SE/SC

=>SB*SC=SD*SE

c: góc AFC=góc AEC=90 độ

=>AEFC nội tiếp

=>góc FEC=góc FAC

a: góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

b: Xét ΔHQB và ΔHPC có

góc HQB=góc HPC

góc QHB=góc PHC

=>ΔHQB đồng dạng với ΔHPC

=>HQ/HP=HB/HC

=>HQ*HC=HP*HB

c: kẻ tiếp tuyến Ax

=>góc xAC=góc ABC=góc ADE

=>Ax//ED

=>OA vuông góc DE