Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp
2: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc BAD chung
Do đó:ΔADB\(\sim\)ΔAEC
Suy ra: AD/AE=AB/AC
hay AD/AB=AE/AC
Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
Do đó: ΔADE\(\sim\)ΔABC
hay \(\widehat{ADE}=\widehat{ABC}\)
1: Xét tứ giác BCDE có \(\widehat{BDC}=\widehat{BEC}=90^0\)
nên BCDE là tứ giác nội tiếp
2: Xét ΔKEB vuông tại E và ΔKDC vuông tại D có
góc EKB=góc DKC
Do đó: ΔEKB\(\sim\)ΔDKC
Suy ra: KE/KD=KB/KC
hay \(KE\cdot KC=KB\cdot KD\)
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllloooooooooooooooonnnnnnnnnnnnnnnnnn
a) Xét tứ giác AEDC có
\(\widehat{AEC}=\widehat{ADC}\left(=90^0\right)\)
\(\widehat{AEC}\) và \(\widehat{ADC}\) là hai góc cùng nhìn cạnh AC
Do đó: AEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
xét tứ giác BFHD có
góc BFH + góc BDH = 180
mà nó là 2 góc đối => nội tiếp => góc FDH = góc FBE
chứng minh tương tự với tứ giác CEHD
=> góc HDE = góc HCE
Xét tứ giác BFEC có
góc BFC = góc BEF = 90
mà nó là 2 góc kề => tứ giác nội tiếp
mà góc BEC = 1/2 sđ BC = 90 => SĐ BC = 180 => BC là đường kính mà I là trung điểm BC => I là tâm đường tròn ngoại tiếp tứ giác BFEC
=> góc FIE = góc FBE + góc FCE
=> Góc FIE = góc FDH+góc HDE => góc FIE = góc FDE
mà nó là 2 góc kề => nội tiếp
=> điều phải cm
a) Nối HK; BK; CK
+) Góc ACK ; góc ABK là góc nội tiếp chắn nửa đường tròn (O;R) => góc ACK = 90o ; góc ABK = 90o
=> AB | BK; AC | CK
Mà AB | CF; AC | BE nên CF // BK ; BE // CK => T/g BHCK là hình bình hành => 2 đường chéo BC ; HK cắt nhau tại trung điểm của mỗi đường
Mà I là trung điểm của BC => I là trung điểm của HK
+) Xét tam giác AKH có: O; I là trung điểm của AK; HK => OI là đường trung bình của tam giác AKH => AH = 2.OI
b) +) Góc BAC là nội tiếp chắn cung BC => Góc BAC = 1/2 góc BOC ( Mối liên hệ giữa góc ở tâm và góc nội tiếp)
=> góc BOC = 2.60o = 120o . Mà tam giác BOC cân tại O ; OI là đường trung tuyến nên đồng thời là đường p/g và đường cao
=> góc BOI = 1/2 góc BOC = 60o
+) Xét tam giác vuông BIO có: BI = OB.sin BOI = R. sin 60o = \(\frac{R\sqrt{3}}{2}\) => BC = 2.BI = \(R\sqrt{3}\)
Vậy....