Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Chứng minh được BFCH là hình bình hành
b, Sử dụng kết quả câu a), suy ra HF đi qua M
c, Chú ý: OM là đường trung bình của ∆AHF => ĐPCM
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{DAB}\) chung
Do đó: ΔADB đồng dạng với ΔAEC
=>\(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)
=>\(AD\cdot AC=AB\cdot AE\)
b: Xét (O) có
ΔABF nội tiếp
AF là đường kính
Do đó: ΔABF vuông tại B
=>BF vuông góc AB
mà CH vuông góc AB
nên BF//CH
Xét (O) có
ΔACF nội tiếp
AF là đường kính
Do đó: ΔACF vuông tại C
=>AC vuông góc CF
mà AC vuông góc BH
nên BH//CF
Xét tứ giác BHCF có
BH//CF
BF//CH
Do đó: BHCF là hình bình hành
c: BHCF là hình bình hành
=>BC cắt HF tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HF
=>H,M,F thẳng hàng
Tham khảo:
d: Xét ΔAHF có FO/FA=FM/FH=1/2
nên OM//AH và OM/AH=FO/FA=1/2
Gọi giao cuảt AG với OH là G'
OM//AH
=>AG'/G'M=HG'/G'O=AH/OM=2
G là trọng tâm của ΔABC
=>AG/GM=2
=>AG'/G'M=AG/GM
=>G' trùng với G
=>HG=2GO
=>S AHG=2*S AGO
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp đường tròn đường kính BC
I là trung điểm của BC
b: góc ABK=1/2*sđ cung AK=90 độ
=>BK//CH
góc ACK=1/2*sđ cung AK=90 độ
=>CK//BH
mà BK//CH
nên BHCK là hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
=>H,I,K thẳng hàng