K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét Δ​AMC và Δ​DMB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)

MC=MB

Do đo: Δ​AMC=Δ​DMB

b: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AC//BD

a: Xét ΔAMC và ΔDMB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)

MC=MB

Do đó: ΔAMC=ΔDMB

b: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AC//BD

30 tháng 11 2016

Xét tam giác AMC và tam giác DMB có:

AM = DM (gt)

AMC = DMB (2 góc đối đỉnh)

MC = MB (M là trung điểm của BC)

=> Tam giác AMC và tam giác DMB (c.g.c)

=> AC = DB (2 cạnh tương ứng) mà AC = AF (gt) => DB = AF

CAM = BDM (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => CA // BD

EAF + FAC + CAB + BAE = 3600

EAF + 900 + CAB + 900 = 3600

EAF + CAB + 1800 = 3600

EAF + CAB = 3600 - 1800

EAF + CAB = 1800

mà DBA + CAB = 1800 (2 góc trong cùng phía, AC // BD)

=> EAF = DBA

Xét tam giác EAF và tam giác ABD có:

EA = AB (gt)

EAF = ABD (chứng minh trên)

AF = BD (chứng minh trên)

=> Tam giác EAF = Tam giác ABD (c.g.c)

=> EF = BD (2 cạnh tương ứng)

22 tháng 12 2016

Hình học lớp 7

25 tháng 3 2020

Mình không vẽ hình, bạn tự vẽ nhé!

a) M là trung điểm của BC \(\Rightarrow BM=MC\)

Xét \(\Delta BAM\)và \(\Delta CDM\)có:

MA=MD ( giả thiết )

\(\widehat{BMA}=\widehat{CMD}\)( tính chất đối đỉnh )

BM=MC ( chứng minh trên )

\(\Rightarrow\Delta BAM=\Delta CDM\)( c.g.c )

b) Xét \(\Delta ACM\)và \(\Delta DBM\)có:

MA=MD ( giả thiết )

\(\widehat{BMD}=\widehat{CMA}\)( tính chất đối đỉnh )

BM=MC ( chứng minh trên )

\(\Rightarrow\Delta ACM=\Delta DBM\)( c.g.c )

\(\Rightarrow AC=BD\)( 2 cạnh tương ứng )

\(\Rightarrow\widehat{MAC}=\widehat{MDB}\)(  2 góc tương ứng ) ở vị trí so lê trong

\(\Rightarrow\)AC//BD

c) Đề bài không rõ ràng mình không làm được

d) Đề bài không rõ ràng mình không làm được

Chúc bạn học tốt!

23 tháng 3 2020

các bạn ơi, mình cần gấp, vẽ hình giúp mình nhé