K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2016
hế cho tôi hỏi có ai làm được bái này k ạ?
3x\8=3y\64=3z\216 và 2x^2+ 2y^2- z^2=1
giúp mình giải bài ny các bạn nhé

nè tui giải nhưng không có thấy x bằng bao nhiêu hay đề sai!!!!!!!!!
Từ đẳng thức trên: ⇒3x8−3y64=0
Suy ra: x=1/8y hay y=8x
⇒3x8−3z216=0 suy ra x=1/27z hay z=27x
Thay vào ta có:
2x2+27x2−272x2=1
⇒x2.(−599)=1
Vậy không có gt x thoả mãn đẳng thức trên!!!!!!!!!!!:-SS:-SS:-SS

18 tháng 6 2016

viết đề sai à

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF và ΔACB có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)

Suy ra: \(\widehat{AFE}=\widehat{ABC}\)

4 tháng 1 2019

a, Ta có: ∆AEF ~ ∆MCE (c.g.c)

=>  A F E ^ = A C B ^

b, Ta có: ∆MFB ~ ∆MCE (g.g)

=> ME.MF = MB.MC

b) Xét ΔMEB và ΔMCF có 

\(\widehat{MEB}=\widehat{MCF}\left(=\widehat{AEF}\right)\)

\(\widehat{M}\) chung

Do đó: ΔMEB\(\sim\)ΔMCF(g-g)

Suy ra: \(\dfrac{ME}{MC}=\dfrac{MB}{MF}\)

hay \(ME\cdot MF=MB\cdot MC\)

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF và ΔACB có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)

Suy ra: \(\widehat{AFE}=\widehat{ABC}\)(hai góc tương ứng)