Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AC'A'C có góc AC'C=góc AA'C=90 độ
nên AC'A'C là tứ giác nội tiếp
=>góc BC'A'=góc BCA
=>ΔBC'A' đồng dạng với ΔBCA
=>BC'/BC=BA'/BA
hay \(BC'\cdot BA=BA'\cdot BC\)
Xét tứ giác AB'A'B có góc AB'B=góc AA'B=90 độ
nên AB'A'B là tứ giác nội tiếp
=>góc CB'A'=góc CBA
=>ΔCB'A' đồng dạng với ΔCBA
=>CB'/CB=CA'/CA
hay \(CB'\cdot CA+CA'\cdot CB\)
=>\(BC'\cdot BA+CB'\cdot CA=BC^2\)
b: ΔAHM đồng dạng với ΔCDH
nên HM/HD=AH/CD(3)
ΔAHN đồng dạng với ΔBDH
nên AH/BD=HN/DH
=>AH/CD=HN/DH(4)
Từ (3) và (4) suy ra HM=HN
=>H là trung điểm của MN
b) Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔABH\(\sim\)ΔCBA(g-g)
Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BC\cdot BH\)(đpcm)
Có gấp thế nào đi nữa thì phải đủ dữ kiện đề tụi tớ mới giúp được cậu nhé :))
a: Xét ΔAHB vuông tại H và ΔCHA vuôg tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
MH/MC=AH/AC=HB/AB
b: Xét ΔABE và ΔCMA có
góc BAE=góc MCA
góc ABE=góc CMA
=>ΔABE đồng dạng vơi ΔCMA
=>góc AEB=góc CAM
=>góc BEA=góc EAM
=>AM//BE
Câu b. Từ H kẻ đường thẳng song song AC cắt EM tại K
Ta chứng minh được BH/BM=EH/EA =>đpcm
Tham khảo: