Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đẳng thức quen thuộc: \(a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\) và tương tự cho các mẫu số còn lại
Ta có:
\(\sum\dfrac{1}{a^2+1}=\sum\dfrac{1}{\left(a+b\right)\left(a+c\right)}=\dfrac{2\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\dfrac{2\left(ab+bc+ca\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Mặt khác:
\(2\left(ab+bc+ca\right)\left(a+b+c\right)=\left[a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)\right]\left(a+b+c\right)\)
\(\ge\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\) (Bunhiacopxki)
\(\Rightarrow\sum\dfrac{1}{a^2+1}\ge\dfrac{\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\left(\dfrac{a}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\right)^2\)
\(=\left(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\right)^2\)
Do đó ta chỉ cần chứng minh:
\(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{3}{2}\)
Đúng theo AM-GM:
\(\sum\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\sum\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
`sqrta+sqrtb+sqrtc=2`
`<=>(sqrta+sqrtb+sqrtc)^2=4`
`<=>a+b+c+2sqrt{ab}+2sqrt{bc}+2sqrt{ca}=4`
`<=>2sqrt{ab}+2sqrt{bc}+2sqrt{ca}=4-(a+b+c)=4-2-2`
`<=>sqrt{ab}+sqrt{bc}+sqrt{ca}=1`
`=>a+1=a+sqrt{ab}+sqrt{bc}+sqrt{ca}=sqrta(sqrta+sqrtb)+sqrtc(sqrta+sqrtb)=(sqrta+sqrtb)(sqrta+sqrtc)`
Tương tự:`b+1=(sqrtb+sqrta)(sqrtb+sqrtc)`
`c+1=(sqrtc+sqrta)(sqrtc+sqrtb)`
`=>VT=sqrta/((sqrta+sqrtb)(sqrta+sqrtc))+sqrtb/((sqrtb+sqrta)(sqrtb+sqrtc))+sqrtc/((sqrtc+sqrta)(sqrtc+sqrtb))`
`=>VT=(sqrta(sqrtb+sqrtc)+sqrtb(sqrtc+sqrta)+sqrtc(sqrta+sqrtb))/((sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta))`
`=(sqrt{ab}+sqrt{ac}+sqrt{bc}+sqrt{ab}+sqrt{ac}+sqrt{bc})/((sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta))`
`=(2(sqrt{ab}+sqrt{bc}+sqrt{ca}))/((sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta))`
`=2/((sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta))`
`=2/\sqrt{[(sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta)]^2}`
`=2/\sqrt{(sqrta+sqrtb)(sqrta+sqrtc)(sqrtb+sqrta)(sqrtb+sqrtc)(sqrtc+sqrta)(sqrtc+sqrtb)}`
`=2/\sqrt{(1+a)(1+b)(1+c)}=>đpcm`
a ơi giả thiết là a+b+c=\(\sqrt{a}+\sqrt{b}+\sqrt{c}\)=2 nhé a
Hai bài giống hệt nhau về cách làm:
Cho a, b, c > 0 thoả mãn: \(a b c=\sqrt{a} \sqrt{b} \sqrt{c}=2\). Chứng minh rằng: \(\dfrac{\sqrt{a}}{a 1} \dfrac{\sqrt{... - Hoc24
Ta có:
\(\left(\sqrt{\dfrac{a^3}{5a^2+\left(b+c\right)^2}}+\sqrt{\dfrac{b^3}{5b^2+\left(c+a\right)^2}}+\sqrt{\dfrac{c^3}{5c^2+\left(a+b\right)^2}}\right)^2\le\left(a+b+c\right)\left(\dfrac{a^2}{5a^2+\left(b+c\right)^2}+\dfrac{b^2}{5b^2+\left(c+a\right)^2}+\dfrac{c^2}{5c^2+\left(a+b\right)^2}\right)\left(1\right)\)
Giờ ta chứng minh:
\(P=\dfrac{a^2}{5a^2+\left(b+c\right)^2}+\dfrac{b^2}{5b^2+\left(c+a\right)^2}+\dfrac{c^2}{5c^2+\left(a+b\right)^2}\le\dfrac{1}{3}\)
Ta có:
\(\dfrac{a^2}{5a^2+\left(b+c\right)^2}\le\dfrac{a^2}{9}\left(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{2a^2+bc}+\dfrac{1}{2a^2+bc}\right)=\dfrac{1}{9}\left(\dfrac{a^2}{a^2+b^2+c^2}+\dfrac{2a^2}{2a^2+bc}\right)=\dfrac{1}{9}+\dfrac{1}{9}\left(\dfrac{a^2}{a^2+b^2+c^2}-\dfrac{bc}{2a^2+bc}\right)\)
Tương tự ta có:
\(\left\{{}\begin{matrix}\dfrac{b^2}{5b^2+\left(c+a\right)^2}\le\dfrac{1}{9}+\dfrac{1}{9}\left(\dfrac{b^2}{a^2+b^2+c^2}-\dfrac{ca}{2b^2+ca}\right)\\\dfrac{c^2}{5c^2+\left(a+b\right)^2}\le\dfrac{1}{9}+\dfrac{1}{9}\left(\dfrac{c^2}{a^2+b^2+c^2}-\dfrac{ab}{2c^2+ab}\right)\end{matrix}\right.\)
Cộng vế theo vế ta được
\(P\le\dfrac{4}{9}-\dfrac{1}{9}\left(\dfrac{bc}{2a^2+bc}+\dfrac{ca}{2b^2+ca}+\dfrac{ab}{2c^2+ab}\right)\)
\(\le\dfrac{4}{9}-\dfrac{1}{9}.\dfrac{\left(ab+bc+ca\right)^2}{bc\left(2a^2+bc\right)+ca\left(2b^2+ca\right)+ab\left(2c^2+ab\right)}=\dfrac{4}{9}-\dfrac{1}{9}=\dfrac{1}{3}\left(2\right)\)
Từ (1) và (2) ta có
\(\sqrt{\dfrac{a^3}{5a^2+\left(b+c\right)^2}}+\sqrt{\dfrac{b^3}{5b^2+\left(c+a\right)^2}}+\sqrt{\dfrac{c^3}{5c^2+\left(a+b\right)^2}}^2\le\sqrt{\dfrac{a+b+c}{3}}\)
Ta có \(\sqrt{bc\left(1+a^2\right)}=\sqrt{bc+a^2bc}=\sqrt{bc+a\left(a+b+c\right)}\)
\(=\sqrt{\left(a+b\right)\left(a+c\right)}\)
Đặt BT đề cho là P
\(\Leftrightarrow P=\sum\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}=\sum\sqrt{\dfrac{a}{a+b}\cdot\dfrac{a}{a+c}}\\ \Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{b+a}+\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\cdot3=\dfrac{3}{2}\)
Dấu \("="\Leftrightarrow a=b=c=\sqrt{3}\)
Không ai thảo luận câu này sao. T khởi động trước nhá.
Ta có: \(\cos\left(\dfrac{A-B}{2}\right)=\dfrac{\cos\left(\dfrac{A-B}{2}\right).\cos\left(\dfrac{A+B}{2}\right)}{\sin\dfrac{C}{2}}\)
\(=\dfrac{\cos A+\cos B}{2\sqrt{\dfrac{1-\cos C}{2}}}=\dfrac{\dfrac{b^2+c^2-a^2}{2bc}+\dfrac{a^2+c^2-b^2}{2ca}}{2\sqrt{\dfrac{1-\dfrac{a^2+b^2-c^2}{2ab}}{2}}}\)
\(=\dfrac{\dfrac{\left(a+b\right)\left(c^2-\left(a-b\right)^2\right)}{abc}}{2\sqrt{\dfrac{c^2-\left(a-b\right)^2}{ab}}}=\dfrac{\left(a+b\right)\sqrt{c^2-\left(a-b\right)^2}}{2c\sqrt{ab}}\)
Ta sẽ chứng minh: \(\dfrac{\left(a+b\right)\sqrt{c^2-\left(a-b\right)^2}}{2c\sqrt{ab}}\le\dfrac{a+b}{\sqrt{2\left(a^2+b^2\right)}}\)
\(\Leftrightarrow\dfrac{2abc^2}{c^2-\left(a-b\right)^2}\ge a^2+b^2\)
\(\Leftrightarrow2abc^2-\left(a^2+b^2\right)\left(c^2-\left(a-b\right)^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+b^2-c^2\right)\ge0\) (đúng vì tam giác ABC nhọn)
\(\Rightarrow\cos\left(\dfrac{A-B}{2}\right)\le\dfrac{a+b}{\sqrt{2\left(a^2+b^2\right)}}\left(1\right)\)
Tương tự ta có: \(\left\{{}\begin{matrix}\cos\left(\dfrac{B-C}{2}\right)\le\dfrac{b+c}{\sqrt{2\left(b^2+c^2\right)}}\left(2\right)\\\cos\left(\dfrac{C-A}{2}\right)\le\dfrac{c+a}{\sqrt{2\left(c^2+a^2\right)}}\left(3\right)\end{matrix}\right.\)
Cộng (1), (2), (3) vế theo vế ta được ĐPCM.
Thảo luận mình là người thứ 2
Chẳng thấy đề có kết nối giữa hai đại lượng [(ABC);(a,b,c)]
gì cả --> thiếu mối liên lạc cần thiết -->đề chưa thực sự rõ rằng --->Đề có suy biến --->lời giải (nếu có) phải là lời giải biện luận theo đề--->chưa thể chấp nhận lời giải trên