K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2023


ý của bạn là cotang đk ạ chứ mình thấy cos nó sai ýloading...

14 tháng 10 2021

a. Xét tam giác ABC có: 

AB2+AC2= 62+82= 36+64= 100=102=BC2 (định lý Pytago đảo)

=> Tam giác ABC vuông tại A

b. Xét hình tứ giác AEFB có

Góc EAF= 90 độ (Tam giác ABC vuông tại A)

Góc AEH= 90 độ ( HE là hình chiếu của E trên AB)

Góc HFA= 90 độ ( HF là hình chiếu của F trên AC)

=> Tứ giác AEHF là hình chữ nhật

\(\)CH = \(\dfrac{64}{10}\) = 6,4

Theo định lý Pytago ta có :

AH2=82-6,42= 23,04

AH= 4,8

Vì trong hình chữ nhật hai đường chéo bằng nhau nên ta có

AH=EF= 4,8

c. Theo hệ thức về cạnh góc vuông ta có

AE.AB= AH2 ( Tam giác BHA vuông tại H)

AF. AC= AH2 (Tam giác CHA vuông tại H)

=> AE.AB=AF.AC

d mình không biết làm

 

 

 

16 tháng 10 2021

Mình cảm ơn bạn nhéyeu

 

26 tháng 7 2019

a) Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=\left(90^0\right)\)

=> BFEC là tứ giác nội tiếp

=> \(\widehat{FEC}+\widehat{ABC}=180^0\)( đpcm )

b) \(tanB\cdot tanC=\frac{AD}{BD}\cdot\frac{AD}{CD}=\frac{AD^2}{BD\cdot CD}\)

Cần chứng minh : \(\frac{AD^2}{BD\cdot DC}=\frac{AD}{HC}=\frac{AD^2}{HC\cdot DC}\)

\(\Leftrightarrow BD\cdot DC=HC\cdot DC\)

Điều này luôn đúng do tam giác ABD đồng dạng với tam giác HDC

Tạm 2 câu trước, đợi mình chút

26 tháng 7 2019

c) Vì ΔABC~ΔAEF nên \(\frac{S_{ABC}}{S_{AEF}}=\frac{AB^2}{AE^2}\) (1)

\(cos^2A=\frac{AE^2}{AB^2}\) (2)

Từ (1) và (2) suy ra : \(\frac{S_{ABC}}{S_{AEF}}.cos^2A=1\)

\(S_{AEF}=S_{ABC}.cos^2A\)

d) Do \(\widehat{A}=45^0\) nên tam giác AEB và AFC vuông cân lần lượt tại E và F.

\(\frac{AE}{AB}=\frac{AF}{AC}=\frac{1}{\sqrt{2}}\)

\(\frac{EF}{BC}=\frac{1}{\sqrt{2}}\)\(EF=\frac{BC}{\sqrt{2}}=\frac{10}{\sqrt{2}}=5\sqrt{2}\)cm

e) Do tam giác ABC nhọn nên

\(S_{ABC}=S_{AEF}+S_{BDF}+S_{CED}+S_{DEF}\)

Dễ chứng minh ΔBDF~ΔBAC; ΔCED~ΔCBA

Ta có: \(cos^2A+cos^2B+cos^2C=\frac{AE^2}{AB^2}+\frac{BF^2}{BC^2}+\frac{CD^2}{CA^2}\)

\(=\frac{S_{AEF}}{S_{ABC}}+\frac{S_{BDF}}{S_{ABC}}+\frac{S_{CDE}}{S_{ABC}}< \frac{S_{AEF}+S_{BDF}+S_{CDE}+S_{DEF}}{S_{ABC}}=1\)

Vậy ....

a, Áp dụng định lí Pitago

\(\dfrac{AC^2+CB^2-BA^2}{CB^2+BA^2-AC^2}\\ =\dfrac{AK^2+KC^2+\left(BK+KC\right)^2-AB^2}{\left(BK+KC^2\right)+BA^2-\left(AK+KC\right)^2}\\ =\dfrac{2CK^2+2BK.CK}{2BK^2+2BK.Ck}\\ =\dfrac{2CK\left(CK+BK\right)}{2BK\left(BK+CK\right)}=\dfrac{CK}{BK}\) 

b, Ta có 

\(tanB=\dfrac{AK}{BK};tanC=\dfrac{AK}{CK}\\ Nên:tanBtanC=\dfrac{AK^2}{BK.CK}\left(1\right)\\ Mặt.khác.ta.có:\\ B=HKC\\ mà:tanHKc=\dfrac{KC}{KH}\\ Nên.tanB=\dfrac{KC}{KH}\\ Tương.tự.tanC=\dfrac{KB}{KH}\\ \Rightarrow tanB.tanC=\dfrac{KB.KC}{KH^2}\left(2\right)\) 

Từ (1) và (2)

 \(\Rightarrow\left(tanB.tanC\right)^2=\left(\dfrac{AK}{KH}\right)^2\\ Theo.GT:\\ HK=\dfrac{1}{3}AK\Rightarrow tanB.tanC=3\) 

c, Chứng minh được 

\(\Delta ABC.và.\Delta ADE.đồng.dạng\\ \Rightarrow\dfrac{S_{ABC}}{S_{ADE}}=\left(\dfrac{AB}{AD}\right)^2\left(3\right)\) 

 \(\widehat{BAC}=60^0\Rightarrow\widehat{ABD}=30^0\\\Rightarrow AB=2AD\left(4\right)\\ Từ.\left(3\right)và\left(4\right)=4\\ \Rightarrow S_{ADE}=30cm^2\)

30 tháng 7 2021

Cho tam giác ABC vuông tại A

a) chứng minh tanB + cosB lớn hơn bằng 2

b) Khi sinB + cosB=căn 2 . Hãy tính góc B

c) H là trung điểm AB, đường thẳng qua H vuông góc với BC tại I và cắt tia AC tại K. Chứng minh tan C x tan BKC =2

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=10(cm)

Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH\cdot BC=AB\cdot AC\)

hay AH=4,8(cm)

19 tháng 8 2016

Ke BH vuong goc voi Ac tai I. Goc ACD+DAC=90 do. Goc DAC+AHI=90 do. Ma AHI=BHD(doi dinh).=>BHD=ACD.=>tanBHD=tanACD=BD/HD. 
=>tanB.tanC=AD/BD.BD/HD=2