Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AE/AB=AF/AC và AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ACB
c; góc AFH=góc AEH=90 độ
=>AFHE nội tiếp (I)
=>IF=IE
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp (M)
=>MF=ME
=>MI là trung trực của EF
=>MI vuông góc EF
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc A chung
=>ΔABD đồng dạng với ΔACE
b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
Xét tam giác \(ABK\) và tam giác \(ACI\) ta có:
\(\widehat{A}\) chung
\(\widehat{AKB}=\widehat{AIC}\left(=90^o\right)\)
Suy ra \(\Delta ABK~\Delta ACI\left(g.g\right)\)
suy ra \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\Leftrightarrow\dfrac{AK}{AB}=\dfrac{AI}{AC}\).
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
HB=6^2/10=3,6cm
Bài 1:
a) Xét tam giác ABE và tam giác ACF có:
Góc AEB=góc AFC(=90 độ)
Góc A chung
=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)
b)
Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)
=>\(\frac{AB}{AC}=\frac{AE}{AF}\)
Xét tam giác AFE và tam giác ACB có:
Góc A chung(gt)
\(\frac{AB}{AC}=\frac{AE}{AF}\)
=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)
c)
H ở đou ra vại? :))
a: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có
góc EHB=góc DHC
=>ΔHEB đồng dạng với ΔHDC
=>HE/HD=HB/HC
=>HE*HC=HB*HD
b: Xét ΔBAC có
BD,CE là đường cao
BD cắt CE tại H
=>H là trực tâm
=>AH vuông góc BC tại F
Xét ΔBFH và ΔBDC có
góc BFH=góc BDC
góc FBH chung
=>ΔBFH đồng dạng với ΔBDC
=>BF/BD=BH/BC
=>BF*BC=BD*BH
a: Xét ΔAKB vuông tại K và ΔANC vuông tại N có
góc KAB chung
=>ΔAKB đồng dạng với ANC
=>AK/AN=AB/AC
=>AK*AC=AB*AN và AK/AB=AN/AC
b: Xét ΔAKN và ΔABC có
AK/AB=AN/AC
góc KAN chung
=>ΔAKN đồng dạng với ΔABC
=>góc AKN=góc ABC