Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: S \(\Delta\)ABC =\(\frac{AD\cdot BC}{2}\)
Hay 30 =\(\frac{AD\cdot5}{2}\)
=> AD =12 (cm)
Mặt khác: \(\widehat{HBD}\)+\(\widehat{BHD}\)=90 (\(\Delta\)BHD vuông tại D)
\(\widehat{DAC}\)+\(\widehat{AHE}\)=90 (\(\Delta\)AHE vuông tại E)
Mà: \(\widehat{BHD}\)=\(\widehat{AHE}\)( 2 góc đối đỉnh )
=> \(\widehat{HBD}\)=\(\widehat{DAC}\)
Xét \(\Delta\)BHD và \(\Delta\)ADC có:
\(\widehat{BDH}\)= \(\widehat{ADC}\) ( = 90*)
\(\widehat{HBD}\)= \(\widehat{DAC}\)( cmt )
=> \(\Delta BHD\)đồng dạng với \(\Delta ACD\)( g-g )
=> \(\frac{BD}{AD}=\frac{HD}{CD}\)
=> BD.CD = AD.HD
=> 6 = 12.HD
=> HD = 1/2 (cm)
Vậy S\(\Delta BHC\)=\(\frac{BC\cdot HD}{2}\)=\(\frac{5\cdot0,5}{2}\)=1,25 (cm2)
Bài 10:
a) Xét ΔABE vuông tại E và ΔCBD vuông tại D có
\(\widehat{DBC}\) chung
Do đó: ΔABE\(\sim\)ΔCBD(g-g)
b) Xét ΔHDA vuông tại D và ΔHEC vuông tại E có
\(\widehat{AHD}=\widehat{CHE}\)(hai góc đối đỉnh)
Do đó: ΔHDA\(\sim\)ΔHEC(g-g)
Suy ra: \(\dfrac{HD}{HE}=\dfrac{HA}{HC}\)
hay \(HD\cdot HC=HE\cdot HA\)
Bài 11:
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔABE\(\sim\)ΔACF(g-g)
b) Xét ΔFHB vuông tại F và ΔEHC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔFHB\(\sim\)ΔEHC(g-g)
Suy ra: \(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)
hay \(HE\cdot HB=HF\cdot HC\)
c) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)
nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
Suy ra: \(\widehat{AEF}=\widehat{ABC}\)
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF;AE/AB=AF/AC
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng vói ΔABC
=>\(\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=\dfrac{1}{4}\)
=>\(S_{ABC}=4\cdot S_{AEF}\)
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc A chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: AE/AF=AB/AC
=>AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ABC
c: ΔAEF đồng dạng với ΔABC
=>\(\dfrac{S_{AEF}}{S_{ABC}}=\dfrac{1}{4}\)
=>\(S_{ABC}=4\cdot S_{AEF}\)
a) Xét ΔAEB và ΔAFC có:
∠AEB = ∠AFC = 90o (gt)
∠A chung
Vậy ΔAEB ∼ ΔAFC (g.g)
b) Xét ΔAEF và ΔABC có
∠A chung
AF.AB = AE.AC (Cmt)
⇒ ΔAEF ∼ ΔABC (c.g.c)
⇒ ∠AEF = ∠ABC
c) ΔAEF ∼ ΔABC (cmt)
a: Xet ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng vơi ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AE*AB; AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng với ΔABC
c: \(DB=\sqrt{5^2-3^2}=4\left(cm\right)\)
\(S_{BAC}=\dfrac{1}{2}\cdot4\cdot6=12\left(cm^2\right)\)