Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b: Xet ΔBDH vuông tại D và ΔBEC vuông tại E có
góc DBH chung
=>ΔBDH đồng dạng với ΔBEC
=>BH/BC=DH/EC
=>BH*EC=DH*BC
a. Xét tứ giác AEHF có: \(\left\{{}\begin{matrix}\widehat{HFA}=90^o\\\widehat{HEA}=90^o\end{matrix}\right.\)\(\Rightarrow\widehat{HFA}+\widehat{HEA}=180^o\)\(\Rightarrow\)Tứ giác AEHF nội tiếp đường tròn đường kính HA
Tương tự ta có, xét tứ giác BCEF có: \(\left\{{}\begin{matrix}\widehat{BFC}=90^o\\\widehat{BEC}=90^o\end{matrix}\right.\)\(\Rightarrow\widehat{BFC}+\widehat{BEC}=180^o\)\(\Rightarrow\) Tứ giác BCEF nội tiếp đường tròn đường kính BC
b. Xét đường tròn (O;R) có: \(\widehat{CNM}=\widehat{CBM}\) (cùng nhìn \(\stackrel\frown{CM}\))
Xét tứ giác BCEF nội tiếp đường tròn ta có: \(\widehat{CFE}=\widehat{CBE}\) (cùng nhìn \(\stackrel\frown{CM}\))
\(\Rightarrow\widehat{CNM}=\widehat{CFE}\) (ở vị trí đồng vị)
\(\Rightarrow\)MN//EF (đpcm)
a: Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=180^0\)
Do đó: AEHF là tứ giác nội tiếp
Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
Do đó: BCEF là tứ giác nội tiếp
a: Xét tứ giác AEHF có
góc AEH+góc AFH=180 độ
=>AEHF là tứ giác nội tiếp
Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
b: Xét (O) có
ΔABK nội tiếp
AK là đường kính
=>ΔABK vuông tại B
=>BK//CH
Xét (O) có
ΔACK nội tiếp
AK là đường kính
=>ΔACK vuông tại C
=>CK//BH
Xét tứ giác BHCK có
BH//CK
BK//CH
=>BHCK là hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
=>I là trung điểm của BC
a: góc AFH+góc AEH=180 độ
=>AEHF nội tiếp
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
b: BFEC nội tiếp
=>góc IBF=góc IEC
Xét ΔIBF và ΔIEC có
góc IBF=góc IEC
góc I chung
=>ΔIBF đồng dạng với ΔIEC
=>IB/IE=IF/IC
=>IB*IC=IE*IF
a) Xét tứ giác BCEF có
\(\widehat{BEC}=\widehat{CFB}\left(=90^0\right)\)
\(\widehat{BEC}\) và \(\widehat{CFB}\) là hai góc cùng nhìn cạnh BC
Do đó: BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) Vì \(\hept{\begin{cases}AD\perp BC\\CF\perp AB\\BE\perp AC\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\widehat{AFC}=90^0\\\widehat{AEB}=90^0\\\widehat{ADC}=90^0\end{cases}}\)
Xét tứ giác AEHF có:
\(\widehat{AEH}+\widehat{AFH}=180^0\)mà 2 góc này ở vị trí đối trong tứ giác AEHF
\(\Rightarrow AEHF\)nội tiếp ( dhnb )
+) Xét tứ giác ACDF có:
\(\widehat{AFC}=\widehat{ADC}=90^0\)
mà 2 đỉnh F,D cùng nhìn cạnh AC dưới 1 góc vuông
\(\Rightarrow ACDF\) nội tiếp
b) Ta có: \(\widehat{BAC}=\widehat{BVC}\left(=\frac{1}{2}sđ\widebat{BC}\right)\)
Vì tứ giác AEHF nội tiếp ( cmt) \(\Rightarrow\widehat{EHC}=\widehat{BAC}\left(tc\right)\)
\(\Rightarrow\widehat{BVC}=\widehat{VHC}\)
Xét tam giác HVC có \(\widehat{BVC}=\widehat{VHC}\left(cmt\right)\)
\(\Rightarrow\Delta HVC\)cân tại C
+) Vì CE là đường cao của tam giác HVC cân tại C
=> CE là đường trung tuyến của tam giác HVC
=> E là trung điểm của HV
Xét tam giác FHB và tam giác EHC có:
\(\hept{\begin{cases}\widehat{FHB}=\widehat{EHC}\left(đ^2\right)\\\widehat{BFH}=\widehat{HEC}=90^0\end{cases}\Rightarrow\Delta FHB~EHC\left(g-g\right)}\) (d^2 là đối đỉnh )
\(\Rightarrow\frac{FH}{HB}=\frac{EH}{HC}\)
\(\Rightarrow FH.FC=EH.HB\)
\(\Rightarrow FH.CV=\frac{HV}{2}.HB\)
\(\Rightarrow BH.HV=2FH.CV\left(đpcm\right)\)
c) Mình sẽ làm tắt nha bạn, tắt này cơ bản thôi chỉ là cm tứ giác nội tiếp í mà
Tứ giác AFDC nội tiếp \(\Rightarrow\widehat{FAD}=\widehat{FCD}\left(1\right)\)
Tứ giác EHDC nội tiếp \(\Rightarrow\widehat{HED}=\widehat{HCD}\left(2\right)\)
(1), (2) \(\Rightarrow\widehat{FAD}=\widehat{HED}\)
Tứ giác BFHD nội tiếp \(\Rightarrow\widehat{FBH}=\widehat{FDH}\left(3\right)\)
Tứ giác BAED nội tiếp \(\Rightarrow\widehat{ABE}=\widehat{ADE}\left(4\right)\)
(3) , (4) \(\Rightarrow\widehat{FDA}=\widehat{HDE}\)
Xét tam giác AFD và tam giác EHD có:
\(\widehat{FAD}=\widehat{HED}\)và \(\widehat{FDA}=\widehat{HDE}\)
\(\Rightarrow\Delta AFD~\Delta EHD\left(g-g\right)\)
\(\Rightarrow\frac{FA}{FD}=\frac{HE}{HD}\left(5\right)\)và \(\widehat{AFD}=\widehat{EHD}\)
Xét tam giác AFI và tam giác VHD có:
\(\hept{\begin{cases}\widehat{AFI}=\widehat{VHD}\left(cmt\right)\\\widehat{FAI}=\widehat{HVD}\left(=\frac{1}{2}sđ\widebat{BN}\right)\end{cases}\Rightarrow\Delta AFI~\Delta VHD\left(g-g\right)}\)
\(\Rightarrow\frac{FA}{F1}=\frac{HV}{HD}=\frac{2HE}{HD}\left(6\right)\)
(5) , (6) \(\Rightarrow\frac{FA}{FI}=\frac{2FA}{FD}\)
\(\Rightarrow FI=\frac{1}{2}FD\)
\(\Rightarrow ID=IF\left(đpcm\right)\)