K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔAEB∼ΔAFC(g-g)

b) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AF\cdot AB=AE\cdot AC\)(đpcm)

Ta có: \(AF\cdot AB=AE\cdot AC\)(cmt)

nên \(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)

Xét ΔAEF và ΔABC có

\(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF;AE/AB=AF/AC

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng vói ΔABC

=>\(\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=\dfrac{1}{4}\)

=>\(S_{ABC}=4\cdot S_{AEF}\)

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

b: Ta có: ΔAEB\(\sim\)ΔAFC

nên AE/AF=AB/AC
hay AE/AB=AF/AC

Xét ΔAEF và ΔABC có 

AE/AB=AF/AC

\(\widehat{EAF}\) chung

DO đó: ΔAEF\(\sim\)ΔABC

26 tháng 4 2018

a)  Xét  \(\Delta AEB\) và   \(\Delta AFC\) có:

     \(\widehat{AEB}=\widehat{AFC}=90^0\)

     \(\widehat{A}\)  chung

suy ra:   \(\Delta AEB~\Delta AFC\) (g.g)

\(\Rightarrow\)\(\frac{AE}{AF}=\frac{AB}{AC}\) \(\Rightarrow\)\(AF.AB=AE.AC\)

b)   \(\frac{AE}{AF}=\frac{AB}{AC}\)\(\Rightarrow\)\(\frac{AE}{AB}=\frac{AF}{AC}\)

Xét  \(\Delta AEF\)và   \(\Delta ABC\) có:

           \(\frac{AE}{AB}=\frac{AF}{AC}\)  (cmt)

           \(\widehat{A}\) chung

suy ra:   \(\Delta AEF~\Delta ABC\) (c.g.c)

\(\Rightarrow\)   \(\widehat{AEF}=\widehat{ABC}\)

c)   \(\Delta AEF~\Delta ABC\)

\(\Rightarrow\)\(\frac{S_{ABC}}{S_{AEF}}=\left(\frac{AB}{AE}\right)^2=\left(\frac{3}{6}\right)^2=\frac{1}{4}\)

\(\Rightarrow\)\(S_{ABC}=4S_{AEF}\)

29 tháng 3 2022

Gửi các bạn lời giải 1 bài tương tự

https://youtu.be/mjiZSkISHgA

loading...  loading...  loading...  

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

11 tháng 3 2019

A B C E F H I

Giải

a) Xét \(\Delta BHF\) và \(\Delta CHE\) có:

\(\widehat{BHF}=\widehat{CHE}\) (vì đối đỉnh)

\(\widehat{BFH}=\widehat{CEH}=90^o\)

=> \(\Delta BHF\)  s  \(\Delta CHE\) (g - g)

b) Xét \(\Delta ABE\) và \(\Delta ACF\) có:

\(\widehat{A}\) là góc chung

\(\widehat{AEB}=\widehat{AFC}=90^o\)

=> \(\Delta ABE\)  s  \(\Delta ACF\) (g - g)

=> \(\frac{AB}{AC}=\frac{AE}{AF}\)

=> AF . AB = AE . AC

c) Xét \(\Delta AEF\) và \(\Delta ABC\) có:

\(\widehat{A}\) là góc chung

\(\frac{AE}{AB}=\frac{AF}{AC}\) (vì \(\Delta ABE\) s \(\Delta ACF\)

=> \(\Delta AEF\)s \(\Delta ABC\) (c - g - c)

d) Câu d mình không nghĩ ra. Bạn tự làm nha, chắc là xét tam giác đồng dạng rồi suy ra hai góc bằng nhau và sẽ suy ra đường phân giác đó.