Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình thích toán nhưng ko đồng ngĩa là mình giỏi toán
a) \(\Delta\)AGE và \(\Delta\)ADB vuông có ^A chung nên \(\Delta AGE~\Delta ADB\)
\(\Rightarrow\frac{AG}{AD}=\frac{AE}{AB}\Rightarrow AG.AB=AD.AE\)(1)
\(\Delta\)AFD và \(\Delta\)AEC vuông có ^A chung nên\(\Delta AFD~\Delta AEC\)
\(\Rightarrow\frac{AF}{AE}=\frac{AD}{AC}\Rightarrow AF.AC=AE.AD\)(2)
Từ (1) và (2) suy ra AD.AE = AB.AG = AC.AF (đpcm)
b) Ta đã chứng minh AB.AG = AC.AF (câu a)
\(\Rightarrow\frac{AG}{AC}=\frac{AF}{AB}\)
\(\Rightarrow FG//BC\)(Theo định lý Thales đảo)
Vậy FG // BC (đpcm)
Xét 2 tgiac vuông ADB và AEC có: góc A chung
\(\Rightarrow\Delta ADB\sim\Delta AEC\left(g\right)\Rightarrow\frac{AD}{AE}=\frac{AB}{AC}\left(1\right)\)
Xét 2 tgiac vuông AGE và AFD có góc A chung
\(\Rightarrow\Delta AGE\sim\Delta AFD\left(g\right)\Rightarrow\frac{AG}{AF}=\frac{AE}{AD}\left(2\right)\)
từ (1) và (2) suy ra bạn sai đề câu a
a: Ta có: EG\(\perp\)AC
BD\(\perp\)AC
Do đó: EG//BD
Xét ΔABD có EG//BD
nên \(\dfrac{AE}{AB}=\dfrac{AG}{AD}\)
=>\(AE\cdot AD=AB\cdot AG\)(1)
Ta có: DF\(\perp\)AB
CE\(\perp\)AB
Do đó: DF//CE
Xét ΔAEC có DF//CE
nên \(\dfrac{AD}{AC}=\dfrac{AF}{AE}\)
=>\(AD\cdot AE=AC\cdot AF\)(2)
Từ (1) và (2) suy ra \(AE\cdot AD=AB\cdot AG=AC\cdot AF\)
b: AB*AG=AC*AF
=>\(\dfrac{AG}{AC}=\dfrac{AF}{AB}\)
Xét ΔABC có \(\dfrac{AG}{AC}=\dfrac{AF}{AB}\)
nên FG//BC
a,
\(\left\{{}\begin{matrix}EG\perp AC\\BD\perp AC\end{matrix}\right.\) ⇒ EG // BD
Xét ΔABD : EG // BD , theo định lý Ta - lét ,có :
\(\dfrac{AE}{AB}=\dfrac{AG}{AD}\) \(\Rightarrow AD.AE=AB.AG\left(1\right)\)
\(\left\{{}\begin{matrix}DF\perp AB\\CE\perp AB\end{matrix}\right.\) ⇒ DF // CE
Xét ΔAEC : DE // CE, theo định lý Ta - lét ,có :
\(\dfrac{AF}{AE}=\dfrac{AD}{AC}\Rightarrow AD.AE=AC.AF\left(2\right)\)
Từ (1)(2) \(\Rightarrow AD.AE=AB.AG=AC.AF\)
b, Ta có :
\(AB.AG=AC.AF\) ( c/m a )
\(\Rightarrow\dfrac{AB}{AF}=\dfrac{AC}{AG}\)
Xét ΔABC ,có :
\(\dfrac{AB}{AF}=\dfrac{AC}{AG}\) ⇒ FG // BC ( đpcm )