Cho tam giác nhọn ABC, hai đường cao BD và CE. Qua D kẻ DF vuông góc với AB (F thuộc AB); qua...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2023

a: Ta có: EG\(\perp\)AC

BD\(\perp\)AC

Do đó: EG//BD

Xét ΔABD có EG//BD

nên \(\dfrac{AE}{AB}=\dfrac{AG}{AD}\)

=>\(AE\cdot AD=AB\cdot AG\)(1)

Ta có: DF\(\perp\)AB

CE\(\perp\)AB

Do đó: DF//CE

Xét ΔAEC có DF//CE

nên \(\dfrac{AD}{AC}=\dfrac{AF}{AE}\)

=>\(AD\cdot AE=AC\cdot AF\)(2)

Từ (1) và (2) suy ra \(AE\cdot AD=AB\cdot AG=AC\cdot AF\)

b: AB*AG=AC*AF

=>\(\dfrac{AG}{AC}=\dfrac{AF}{AB}\)

Xét ΔABC có \(\dfrac{AG}{AC}=\dfrac{AF}{AB}\)

nên FG//BC

20 tháng 2 2020

A B C D E G F

20 tháng 2 2020

Xét 2 tgiac vuông ADB và AEC có: góc A chung

\(\Rightarrow\Delta ADB\sim\Delta AEC\left(g\right)\Rightarrow\frac{AD}{AE}=\frac{AB}{AC}\left(1\right)\)

Xét 2 tgiac vuông AGE và AFD có góc A chung

\(\Rightarrow\Delta AGE\sim\Delta AFD\left(g\right)\Rightarrow\frac{AG}{AF}=\frac{AE}{AD}\left(2\right)\)

từ (1) và (2) suy ra bạn sai đề câu a

9 tháng 2 2018

A A B B C C M M D D E E F F

a) Ta có : \(\frac{DF}{AM}=\frac{DC}{MC};\frac{DE}{AM}=\frac{BD}{MB}\)

\(\Rightarrow\frac{DE+DF}{AM}=\frac{BD}{BM}+\frac{DC}{MC}=\frac{BD+DC}{MC}=\frac{BC}{MC}=2\)

Vậy nên DE + DF = 2AM.

b) Theo định lý Ta let ta có:

\(\frac{AE}{AB}=\frac{DM}{BM}=\frac{DM}{MC}=\frac{AF}{AC}\)

\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)

27 tháng 4 2019

Mọi người ơi mình cần gấp câu c. Giúp mình với

20 tháng 12 2014

2/. Tam giác AKC có

          CH là đường cao

         AE là đường cao

         Ch cắt AE tại E

Nên E là trực tâm của tam giác AKC

20 tháng 12 2014

3/. Ta có góc HAC + góc HCA = 90 độ

     Ta có góc IEC + góc ECI = 90 độ => góc ICE + góc HCA = 90 độ

 => góc HAC = góc IEC                                                                                  (1)

Ta có IH = AH (tam giác AIK vuông tại I, HI là trung tuyến)

         => tam giác AHI cân tại H => góc HAI = góc HIA => góc HAC = góc HIA  (2)

Ta có IM = MẸ (tam giác EIC vuông tại I, IM là trung tuyến

         => tam giác EMI cân tại M => góc IEM = góc MIE => góc IEC = góc MIE (3)

Từ (1)(2)(3) ta suy ra góc HIA = góc MIE    (4)

Ta có góc HIA + góc HIE = 90 độ(5)

         góc HIE + góc EIM = 90 độ(6)

Từ (4)(5)(6) ta suy ra góc HIE + góc EIM = 90 độ => HI vuông góc với IM

15 tháng 10 2018

a) Xét tứ giác AEDF có DE song song và bằng AF nên AEDF là hình bình hành (Dấu hiệu nhận biết).

Vậy thì AE = FD (tính chất hình bình hành)

b) Do AEDF là hình bình hành nên hai đường chéo AD và EF cắt nhau tại trung điểm mỗi đường.

Theo đề bài thì I là trung điểm AD nên I cũng là trung điểm EF.

Vậy E đối xứng với F qua I.