Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải :
Xét tam giác ABC cân tại A có:
góc ABC = góc ACB (t/c)
mà góc MIB = góc ACB ( 2 góc đồng vị do MI//AC)
=> góc ABC = góc MIB
hay góc MBI = góc MIB => tam giác MIB cân tại M ( dấu hiệu nhận biết)
=> MB=MI ( t/c)
Mà MB= CN (gt)
=> MI=CN
Xét tứ giác MINC có
MI// CN (gt)
MI = CN (cmt)
=> tứ giác MINC là hình bình hành ( dấu hiệu nhận biết)
Xét hình bình hành MINC có
MN giao với IC tại O (gt)
=> O là trung điểm của MN(t/c)
=> OM= ON
Vậy OM=ON
Áp dụng định lí Menelaus trong tam giác ABN ta có :
MAMB.OBON.CNCA=131.OBON.1,54,5=1
⇒OBON=1
Áp dụng định lí Mê-nê-la-uýt trong tam giác ACM ta có:
NANC.OCOM.BMBA=1
31,5.OCOM.14=1
OCOM=2
Vậy OBON+OCOM=3
Áp dụng định lí Mê-nê-la-uýt trong tam giác ABN ta có:
MA/MB.OB/ON.CN/CA=1
3/1.OB/ON.1,5/4,5=1
⇒OB/ON=1
Áp dụng định lí Mê-nê-la-uýt trong tam giác ACM ta có:
NA/NC.OC/OM.BM/BA=1
3/1,5.OC/OM.1/4=1
OC/OM=2
Vậy OB/ON+OC/OM=3