K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2


Do \(AM=\dfrac{BC}{2}\left(gt\right)\) và \(BM=CM=\dfrac{BC}{2}\left(gt\right)\)
nên \(AM=BM=CM\)
\(\Rightarrow\Delta ABM\) cân tại \(M\) và \(\Delta ACM\) cân tại \(M\)
\(\Rightarrow\widehat{MAB}=\widehat{B};\widehat{MAC}=\widehat{C}\)
\(\Rightarrow\widehat{MAB}+\widehat{MAC}=\widehat{B}+\widehat{C}\)
\(\Rightarrow\widehat{BAC}=\widehat{B}+\widehat{C}\)
mà \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow2\cdot\widehat{BAC}=180^o\)
\(\Rightarrow\widehat{BAC}=90^o\)
Vậy: Nếu \(AM=\dfrac{BC}{2}\) thì \(\widehat{A}=90^o\)

NV
22 tháng 2

Do M là trung điểm BC nên \(MB=MC=\dfrac{BC}{2}\)

Theo giả thiết \(AM=\dfrac{BC}{2}\)

\(\Rightarrow AM=MB=MC\)

\(\Rightarrow\) Các tam giác MAB và MAC cân tại M

\(\Rightarrow\left\{{}\begin{matrix}\widehat{MAB}=\widehat{MBA}\\\widehat{MAC}=\widehat{MCA}\end{matrix}\right.\) 

\(\Rightarrow\widehat{MAB}+\widehat{MAC}=\widehat{MBA}+\widehat{MCA}\)

\(\Rightarrow\widehat{BAC}=\widehat{MBA}+\widehat{MCA}\)

Theo tính chất tổng 3 góc của tam giác ABC:

\(\widehat{BAC}+\widehat{MBA}+\widehat{MCA}=180^0\)

\(\Rightarrow\widehat{BAC}+\widehat{BAC}=180^0\)

\(\Rightarrow2.\widehat{BAC}=180^0\)

\(\Rightarrow\widehat{BAC}=90^0\)