K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2019

Đây nhá:)Sửa đề:

Chứng minh rằng \(\Sigma S_a\left(b-c\right)^2\ge S\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

Nếu \(s_a+S_b\ge0;S_b+S_c\ge0;2\sqrt{\left(S_a+S_b\right)\left(S_b+S_c\right)}+2S_b-S\left(c-a\right)\ge0\)

Xét TH \(a\ge b\ge c\) thì bđt đề bài hiển nhiên đúng nên ta chỉ xét:

\(a\le b\le c\) khi đó \(\left(a-b\right)\left(b-c\right)\ge0\) (1)

Ta có: \(S_a\left(b-c\right)^2+S_b\left(c-a\right)^2+S_c\left(a-b\right)^2\)

\(=\left(S_a+S_b\right)\left(b-c\right)^2+\left(S_c+S_b\right)\left(a-b\right)^2+2S_b\left(a-b\right)\left(b-c\right)\)

\(\ge2\sqrt{\left(S_a+S_b\right)\left(S_b+S_c\right)}\left(a-b\right)\left(b-c\right)+2S_b\left(b-c\right)\left(a-b\right)\)

(CÔ si)

Như vậy, BĐT đề bài sẽ được chứng minh nếu:

\(2\sqrt{\left(S_a+S_b\right)\left(S_b+S_c\right)}\left(a-b\right)\left(b-c\right)+2S_b\left(b-c\right)\left(a-b\right)\ge S\left(a-b\right)\left(b-c\right)\left(c-a\right)\)\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(2\sqrt{\left(S_a+S_b\right)\left(S_b+S_c\right)}+2S_b-S\left(c-a\right)\right)\ge0\)

Và điều này luôn đúng theo (1) và giả thiết đề bài.

8 tháng 9 2019

\(S_a\left(b-c\right)^2\) là gì vậy, cái này em chưa học. Giải thích đi để em xem thế nào...

13 tháng 4 2017

\(\overrightarrow{u}=3\overrightarrow{MA}-5\overrightarrow{MB}+2\overrightarrow{MC}=3\left(\overrightarrow{MA}-\overrightarrow{MB}\right)+2\left(\overrightarrow{MC}-\overrightarrow{MB}\right)\)
\(=3\left(\overrightarrow{MA}+\overrightarrow{BM}\right)+2\left(\overrightarrow{MC}+\overrightarrow{BM}\right)=3\overrightarrow{BA}+2\overrightarrow{BC}\) (không phụ thuộc vào vị trí điểm M).

\(\Leftrightarrow\overrightarrow{MA}\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)=\overrightarrow{0}\)

=>vecto MA=0 hoặc M là trọng tâm của ΔABC

=>M là trọng tâm của ΔABC hoặc M trùng với A

AH
Akai Haruma
Giáo viên
14 tháng 8 2021

Lời giải:

a.

\(|\overrightarrow{MC}|=|\overrightarrow{MA}-\overrightarrow{MB}|=|\overrightarrow{BA|}\)

Tập hợp điểm $M$ thuộc đường tròn tâm $C$ đường bán kính $AB$

b. Gọi $I$ là trung điểm $AB$. Khi đó:

\(|\overrightarrow{MA}+\overrightarrow{MB}|=|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}|\)

\(=|2\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{IB}|=|2\overrightarrow{MI}|=0\)

\(\Leftrightarrow |\overrightarrow{MI}|=0\Leftrightarrow M\equiv I\)

Vậy điểm $M$ là trung điểm của $AB$

 

 

AH
Akai Haruma
Giáo viên
14 tháng 8 2021

c.

Trên tia đối của tia $CA$ lấy $K$ sao cho $KC=\frac{1}{3}CA$

\(|\overrightarrow{MA}|=2|\overrightarrow{MC}|\Leftrightarrow |\overrightarrow{MK}+\overrightarrow{KA}|=2|\overrightarrow{MK}+\overrightarrow{KC}|\)

\(\Leftrightarrow |\overrightarrow{MK}+4\overrightarrow{KC}|=|2\overrightarrow{MK}+2\overrightarrow{KC}|\)

\(\Leftrightarrow (\overrightarrow{MK}+4\overrightarrow{KC})^2=(2\overrightarrow{MK}+2\overrightarrow{KC})^2\)

\(\Leftrightarrow MK^2+16KC^2=4MK^2+4KC^2\)

\(\Leftrightarrow 12KC^2=3MK^2\Leftrightarrow MK=2KC=\frac{2}{3}AC\)

Vậy $M$ thuộc đường tròn tâm $K$ bán kính $\frac{2}{3}AC$