K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

Mình mới giải đc câu a và câu 1 phần d) thôi nhưng muộn quá:

a)Xét 2 tam giac ACN va tam giac ABM co:

AB=AC(GT)

A chung

AN=AM(GT)

=>tam giac ACN=tam giac ABM(c.g.c).Mình mới làm tới đây thôi.Chúc ngủ ngon

16 tháng 12 2016

a) Có: AM = CM = AC/2 (gt); AN = BN = AB/2 (gt)

Mà AC = AB (gt) nên AM = CM = AN = BN

Xét t/g ABM và t/g ACN có:

AB = AC (gt)

A là góc chung

AM = AN (cmt)

Do đó, t/g ABM = t/g ACN (c.g.c) (đpcm)

b) t/g ABC có AB = AC (gt) => t/g ABC cân tại A

=> ABC = ACB ( tính chất t/g cân) (1)

t/g ABM = t/g ACN (câu a)

=> ABM = ACN (2 góc tương ứng) (2)

Từ (1) và (2) => ABC - ABM = ACB - ACN

=> MBC = NCB

=> t/g BOC có góc bằng nhau (cân tại O) (đpcm)

c) Xét t/g ANF và t/g BNC có:

AN = NB (gt)

ANF = BNC ( đối đỉnh)

NF = NC (gt)

Do đó, t/g ANF = t/g BNC (c.g.c)

=> AF = BC (2 cạnh tương ứng)

AFN = BCN (2 góc tương ứng)

Mà AFN và BCN là 2 góc ở vị trí so le trong nên AF // BC (1)

Tương tự như vậy ta cũng có: t/g AME = t/g CMB (c.g.c)

AE = BC và AE // BC (2)

Từ (1) và (2) => AF và AE trùng nhau hay A,E,F thẳng hàng

Lại có: AE = AF = BC

Do đó A là trung điểm của EF (đpcm)

d) t/g AMN có AM = AN (câu a)

=> t/g AMN cân tại A

=> AMN = ANM ( tính chất t/g cân)

=> MAN = 180o - 2.AMN (3)

Ta cũng có: ABC = ACB (câu b)

=> CAB = 180o - 2.ACB (4)

Từ (3) và (4) => AMN = ACB

Mà AMN và ACB là 2 góc ở vị trí đồng vị nên MN // BC

Lại có: EF // BC (câu c) nên MN // BC // EF (đpcm)

a: Xét ΔFCD vuông tại C có CE là đường cao

nên \(FE\cdot FD=FC^2\left(1\right)\)

Xét ΔFCB vuông tại C có CH là đường cao

nên \(FH\cdot FB=FC^2\left(2\right)\)

Từ (1) và (2) suy ra \(FE\cdot FD=FH\cdot FB\)

b: Xét tứ giác CFHE có \(\widehat{CEF}=\widehat{CHF}=90^0\)

nên CFHE là tứ giác nội tiếp

Xét tứ giác ABCH có \(\widehat{CAB}=\widehat{CHB}=90^0\)

nên ABCH là tứ giác nội tiếp

Ta có: \(\widehat{AHB}=\widehat{ACB}\)(ABCH là tứ giác nội tiếp)

\(\widehat{EHC}=\widehat{EFC}\)(CFHE là tứ giác nội tiếp)

mà \(\widehat{ACB}=\widehat{CFD}\left(=90^0-\widehat{CDF}\right)\)

nên \(\widehat{AHB}=\widehat{EHC}\)

Ta có: ABCH là tứ giác nội tiếp

=>\(\widehat{ABH}=\widehat{ECH}\)

Xét ΔABH và ΔECH có

\(\widehat{ABH}=\widehat{ECH}\)

\(\widehat{AHB}=\widehat{EHC}\)

Do đó: ΔABH đồng dạng với ΔECH

a: Xét ΔABN vuông tại A và ΔACM vuông tại A có

AB=AC

góc ABN=góc ACM

=>ΔABN=ΔACM

b: ΔABN vuông tại A có AE là trung tuyến

nên AE=BE=NE=BN/2

ΔACM vuông tại A có AD là trung tuyến

nên AD=CM/2=BN/2=AE

góc EAB=góc EBA=15 độ

góc DAC=góc DCA=15 độ

=>góc EAD=90-15-15=60 độ

Xét ΔAED có AE=AD  và góc EAD=60 độ

nên ΔAED đều

c: Xét ΔIBC có góc IBC=góc ICB

nên ΔIBC cân tại I

=>IB=IC

=>I nằm trên trung trực của BC

=>A,I,H thẳng hàng