K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: BM=2MC(gt)

nên \(\dfrac{MC}{BM}=\dfrac{1}{2}\)(1)

Ta có: NA=2NC(gt)

nên \(\dfrac{NC}{NA}=\dfrac{1}{2}\)(2)

Từ (1) và (2) suy ra \(\dfrac{CM}{MB}=\dfrac{CN}{NA}\)

Xét ΔCAB có 

N∈AC(gt)

M∈BC(gt)

\(\dfrac{CM}{MB}=\dfrac{CN}{NA}\)(cmt)

Do đó: MN//AB(Định lí Ta lét đảo)

13 tháng 2 2018

a. Ta có CN/NA=CM/MB(=1/2)

⇒NM//AB (theo định lí ta-lét đảo)

b. Ta có GA/GM=GB/GN=AB/MN ( theo hệ quả định lí ta-lét)

Lại có AB/MN=CB/CM=3 (theo hệ quả định lí ta-lét)

Do đó , ta được GA/GM=GB/GN=3

chúc bạn học giỏi,mong là mình đã giúp được bạn

vui

13 tháng 2 2018

mk ước j bạn có thể làm sớm hơn

13 tháng 2 2018

huhuuccheyeu

13 tháng 2 2018

Đề sai rồi.

Bài 1: 

a:  Xét ΔABC có 

M là trung điểm của AB

MN//BC

Do đó: N là trung điểm của AC

b: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Bài 2: 

a: Xét ΔABC vuông tại A có

\(BC^2=AB^2+AC^2\)

hay AC=12(cm)

b: Xét ΔABC có 

MN//AC

nên \(\dfrac{MN}{AC}=\dfrac{BM}{AB}\)

hay MN=6(cm)

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

MN//BC

Do đó: N là trung điểm của AC

b: Xét ΔACB có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Bài 2: 

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay AC=12(cm)

b: Xét ΔABC có

M là trung điểm của AB

MN//AC

Do đó: N là trung điểm của BC

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: \(MN=\dfrac{AC}{2}=\dfrac{12}{2}=6\left(cm\right)\)