Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
a.Xét tam giác ABE và tam giác ACD, có:
\(\widehat{A}:chung\)
AD = AE ( gt )
AB = AC ( ABC cân )
Vậy tam giác ABE = tam giác ACD ( c.g.c )
b.Xét tam giác DBC và tam giác ECB, có:
BD = CE ( AB=AC; AD=AE )
góc B = góc C ( ABC cân )
BC: cạnh chung
Vậy tam giác DBC = tam giác ECB ( c.g.c )
=> góc DCB = góc EBC ( 2 góc tương ứng )
=> Tam giác KBC là tam giác cân và cân tại K
c.Xét tam giác AKB và tam giác AKC có:
AB=AC ( ABC cân )
góc ABK = góc ACK ( góc B = góc C; góc KBC = góc KCB )
AK: cạnh chung
Vậy tam giác AKB = tam giác AKC ( c.g.c )
=> góc BAK = góc CAK ( 2 góc tương ứng )
Mà Tam giác ADE cân tại A ( AD=AE )
=> AK là đường cao
=> AK vuông DE (1)
Mà Tam giác KBC cân tại K
=> AK vuông với BC (2)
Từ (1) và (2) => DE//BC
d. Ta có: AK là đường cao ( cmt ) cũng là đường trung tuyến
Mà M là trung điểm BC
=> A,K,M thẳng hàng
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là tia phân giác
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
a: Xét ΔAEBvà ΔADC có
AE=AD
góc A chung
AB=AC
=>ΔAEB=ΔADC
=>BE=CD
b: Xét ΔMDB và ΔMEC có
góc MDB=góc MEC
DB=EC
góc MBD=góc MCE
=>ΔMDB=ΔMEC
c: Xét ΔAMB và ΔAMC có
MA chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
`@`` \text {dnv}`
`a,`
Xét `\Delta ABE` và `\Delta ACD`:
`\text {AB = AC (Tam giác ABC cân tại A)}`
`\hat {A}`` \text {chung}`
`\text {AD = AE (gt)}`
`=> \Delta ABE = \Delta ACD (c-g-c)`
`-> \text {BE = CD (2 cạnh tương ứng)}`
`b,`
Vì `\Delta ABE = \Delta ACD (a)`
$ -> \widehat {ACD} = \widehat {ABE} (\text {2 góc tương ứng})$
`->` $\widehat {ADC} = \widehat {AEB} (\text {2 góc tương ứng})$
Ta có: \(\left\{{}\begin{matrix}\widehat{ADC}+\widehat{BDC}=180^0\\\widehat{AEB}+\widehat{CEB}=180^0\end{matrix}\right.\)
$\widehat {ADC} = \widehat {AEB}$
`->` $\widehat {CEB} = \widehat {BDC}$
Ta có:\(\left\{{}\begin{matrix}\text{AB = AD + DB}\\\text{AC = AE + EC}\end{matrix}\right.\)
Mà: \(\left\{{}\begin{matrix}\text{AB = AC}\\\text{AD = AE}\end{matrix}\right.\)
`-> \text {BD = EC}`
Xét `\Delta BMD` và `\Delta CME`:
\(\widehat{\text{DBM}}=\widehat{\text{ECM}}\left(\text{CMT}\right)\)
\(\text{BD = CE (CMT)}\)
\(\widehat{\text{BDM}}=\widehat{\text{CEM}\text{ }}\text{ }\left(\text{CMT}\right)\)
`=> \Delta BMD = \Delta CME (g-c-g)`
`c,` Đề có phải là "Chứng minh AM là phân giác của góc BAC" ?
Vì `\Delta BMD = \Delta CME (b)`
`-> \text {MB = MC (2 cạnh tương ứng)}`
Xét `\Delta BAM` và `\Delta CAM`:
`\text {AB = AC} (\Delta ABC \text {cân tại A})`
`\text {AM chung}`
`\text {MB = MC (CMT)}`
`=> \Delta BAM = \Delta CAM (c-c-c)`
`->` $\widehat {BAM} = \widehat {CAM} (\text {2 góc tương ứng})$
`-> `\(\text{AM là tia phân giác của }\widehat{\text{BAC}}\)
Đề sai rồi bạn